

59, Mecix
 819

Ma ঢิल̂ß - Sok Piseth Page
Facebook.com/TeacherSokPiseth
pisethsok.wordpress.com (8+) plus.google.com/+Piseth5ok_spS

Chapitre 3

La fonction exponentielle

I. Calculs

\checkmark Somme, produit, différence et quotient
Exercice 1.

Solution

- $A=e^{5}+7 e^{-5}-3 e^{5}-9 e^{-5}=-2 e^{5}-2 e^{-5}=-2\left(e^{5}+e^{-5}\right)$.
- $B=\frac{7 e^{5} \times\left(3 e^{3}\right)^{2}}{21 e^{-5}}=\frac{7 e^{5} \times 9 e^{6}}{21 e^{-5}}=\frac{7 \times 9}{21} e^{5} \times e^{6} \times e^{5}=3 e^{16}$.
- $C=\left(2 e^{3}+e^{-3}\right)^{2}=4\left(e^{3}\right)^{2}+4 e^{3} \times e^{-3}+\left(e^{-3}\right)^{2}=4 e^{6}+4+e^{-6}$.
- … $D=\sqrt{\left(e^{2}\right)^{3}}=\sqrt{e^{6}}=e^{3}$.

Exercice 2.

Solution

$$
\begin{aligned}
& A=\left(e^{2}-3 e^{5}\right)^{2}=\left(e^{2}\right)^{2}-6 e^{2} \times e^{5}+9\left(e^{5}\right)^{2}=e^{4}-6 e^{7}+9 e^{10} . \\
& B=\left(e^{2 x}+e^{-2 x}\right)^{2}-\left(e^{2 x}-e^{-2 x}\right)^{2}=e^{4 x}+e^{-4 x}+2-\left(e^{4 x}+e^{-4 x}-2\right)=4 .
\end{aligned}
$$

Exercice 3.

Simplifier $A=e^{108}+e^{109}+e^{110}+\ldots+t^{133}$

Solution

La suite $\left(e^{n}\right)_{n \in \mathbb{N}}$ est une suite géométrique de raison e.
$A=e^{108}+e^{109}+e^{110}+\ldots+e^{133}=e^{108}\left(1+e+\ldots+e^{25}\right)$. Comme $e \neq 1$, on
a $A=e^{108} \times \frac{1-e^{26}}{1-e}=\frac{e^{108}-e^{134}}{1-e}$.
Exercice 4.

Demontrer que, poir lont x appantenani in $R=\frac{e}{x}, \frac{1}{2}$

Solution

Pour tout x appartenant à $\mathbb{R}, \frac{1-e^{-x}}{1+e^{-x}}=\frac{e^{x}\left(1-e^{-x}\right)}{e^{x}\left(1+e^{-x}\right)}=\frac{e^{x}-1}{e^{x}+1} \cdot e^{x} \neq 0$.

\checkmark Résoudre une équation

Exercice 5.

Pécondrenansta les Equitions sinimites:

Solution

$$
e^{-x}-e^{x}=0 \Leftrightarrow e^{x}=e^{-x} \Leftrightarrow x=-x \Leftrightarrow x=0 .
$$

e^{x} et e^{-x} sont strictement positifs d'où $e^{-x}+e^{x}>0$ donc l'équation $e^{-x}+e^{x}=0$ n'a pas de solution.

Exercice 6.

Résoudre dans \mathbb{R} l'équation: $e^{2 x}-(1+e) e^{x}+e=0$ (poser $\left.X=e^{x}\right)$.

Solution

On pose $X=e^{x}$. L'équation devient $X^{2}-(1+e) X+e=0$.
$\Delta=(1+e)^{2}-4 e=1-2 e+e^{2}=(1-e)^{2} . \sqrt{\Delta}=e-1$ car $e>1$.

$$
\begin{aligned}
& X_{1}=\frac{1+e+e-1}{2}=\frac{2 e}{2}=e>0 . \\
& X_{2}=\frac{1+e-(e-1)}{2}=\frac{1+e-e+1}{2}=\frac{2}{2}=1>0 . \\
& e^{2 x}-(1+e) e^{x}+e=0 \Leftrightarrow\left(e^{x}=e \text { ou } e^{x}=1\right) \Leftrightarrow x=1 \text { ou } x=0 .
\end{aligned}
$$

Exercice $\%$.

 Wers des solitions eventuelles des equitions

Solution

- $\left(e^{x}=5\right) \Leftrightarrow\left(\ln \left(e^{x}\right)=\ln (5)\right) \Leftrightarrow x=\ln 5$.
donc $x=1.60944$ à 10^{-5} près par excès.
- $\left(7-3 e^{x}=-8 e^{x}\right) \Leftrightarrow\left(5 e^{x}=-7 \Leftrightarrow e^{x}=-\frac{7}{5}\right)$.

Cette équation n'a pas de solution car pour tout réel x on a $e^{x}>0$.

- $\left(-2 e^{x}+19=5 e^{x}\right) \Leftrightarrow\left(7 e^{x}=19\right) \Leftrightarrow\left(e^{x}=\frac{19}{7}\right)$.
$\left(-2 e^{x}+19=5 e^{x}\right) \Leftrightarrow\left(\ln \left(e^{x}\right)=\ln \left(\frac{19}{7}\right)\right) \Leftrightarrow x=\ln \left(\frac{19}{7}\right)$.
$x=0.99853$ à 10^{-5} près par excès.

Exercice 8.

Solution

$$
\left(\frac{3 e^{x}-1}{9+e^{x}}=2\right) \Leftrightarrow\left(3 e^{x}-1=2\left(9+e^{x}\right)\right) \Leftrightarrow\left(e^{x}=19\right) \Leftrightarrow x=\ln (19)
$$

donc $x=2.9444$ à 10^{-4} près par défaut.

- On pose $X=e^{x}$ l'équation $\frac{3 e^{x}+1}{5 e^{x}+2}=\frac{e^{x}-37}{2 e^{x}-64}$. s'écrit alors

$$
\frac{3 X+1}{5 X+2}=\frac{X-37}{2 X-64} .
$$

L'ensemble de définition de cette dernière équation est $\mathbb{R}-\left\{-\frac{2}{5}, 32\right\}$.
$\left(\frac{3 X+1}{5 X+2}=\frac{X-37}{2 X-64}\right) \Leftrightarrow((3 X+1)(2 X-64)=(5 X+2)(X-27))$
$\Leftrightarrow\left(6 X^{2}-190 X-64=5 X^{2}-183 X-74\right) \Leftrightarrow\left(X^{2}-7 X+10=0\right)$
$\Leftrightarrow((X-2)(X-5)=0) \Leftrightarrow(X=2$ ou $X=5)$.
2 et 5 sont dans l'ensemble de définition $\mathbb{R}-\left\{-\frac{2}{5} ; 32\right\}$ donc 2 et 5 sont solutions de $\frac{3 X+1}{5 X+2}=\frac{X-37}{2 X-64}$. Comme $X=e^{x}$ on a :
$\left(\frac{3 e^{x}+1}{5 e^{x}+2}=\frac{e^{x}-37}{2 e^{x}-64}\right) \Leftrightarrow\left(e^{x}=2\right.$ ou $\left.e^{x}=5\right) \Leftrightarrow x=\ln (2)$ ou $x=\ln (5)$.
$x=0.6931$ à 10^{-4} près par défaut ou $x=1.6094$ à 10^{-4} près par défaut.

Exercice 9.

Bescudre dans. 14 puis domper ure Valenf approchice a 10 . pres par exest de: solutions de cquations:
$19: \frac{2 x}{2}=\frac{3 e t+2}{3}=$

Solution

$$
\left(e^{-x}-5=19\right) \Leftrightarrow\left(e^{-x}=24\right) \Leftrightarrow\left(e^{x}=\frac{1}{24}\right) \Leftrightarrow\left(x=\ln \left(\frac{1}{24}\right)\right) \text {. }
$$

$x=-\ln (24)$ et $x=-3.1780$ à 10^{-4} près par excès.

$$
\left(\frac{2 e^{-x}-5}{3}=\frac{3 e^{-x}+2}{5}\right) \Leftrightarrow\left(5\left(2 e^{-x}-5\right)=3\left(3 e^{-x}+2\right)\right)
$$

$\left(10 e^{-x}-25=9 e^{-x}+6\right) \Leftrightarrow\left(e^{-x}=31\right) \Leftrightarrow(-x=\ln (31))$
$x=-\ln (31)$ et $x=-3.4339$ à 10^{-4} près par excès.

Exercice 10.

Resoudre dans: \mathbb{R} puis donner une valeur approchée a 10^{-1} prês par défaut des solutions des équations

Solution

$$
\left(e^{2 x-1}=5\right) \Leftrightarrow\left(\ln \left(e^{2 x-1}\right)=\ln (5)\right) \Leftrightarrow(2 x-1=\ln (5))
$$

$\Leftrightarrow x=\frac{1+\ln (5)}{2} \cdot x=1.3047$ à̀ 10^{-4} près par défaut.

- $\left(3 e^{7-3 x}+19=5 e^{7-3 x}\right) \Leftrightarrow\left(e^{7-3 x}=\frac{19}{2}\right) \Leftrightarrow 7-3 x=\ln \left(\frac{19}{2}\right)$
$\Leftrightarrow x=\frac{1}{3}\left(7-\ln \left(\frac{19}{2}\right)\right)$ donc $x=1.5829$ à 10^{-4} près par défaut.

Exercice 11.

Solution

On pose $X=e^{x}$. L'équation s'écrit alors $X^{2}+3 X-5=0$ (1).
Le discriminant est : $\Delta=9+20=29$. Les solutions de l'équation (1) sont donc $X_{1}=\frac{-3+\sqrt{29}}{2}$ et $X_{2}=\frac{-3-\sqrt{29}}{2}$. Comme $X>0$ oǹ ne doit conserver que les solutions strictement positives. On résout donc $e^{x}=\frac{-3+\sqrt{29}}{2}$ ce qui donne $x=\ln \left(\frac{-3+\sqrt{29}}{2}\right)$ et $x=0.176$ à 10^{-3} près par défaut.

Exercice 12.*

Résoudre dans tis lequation e^{3}

Solution

On pose $X=e^{3 x+2}$ donc $X>0$. L'équation $e^{3 x+2}+\frac{e}{e^{3 x+2}}=e+1$
s'écrit: $X+\frac{e}{X}=1+e .\left(X+\frac{e}{X}=1+e\right) \Leftrightarrow\left(X^{2}-(1+e) X+e=0\right)$.
$\Delta=(1+e)^{2}-4 e=(1-e)^{2}>0 . X_{1}=\frac{1+e+\sqrt{\Delta}}{2}=\frac{1+e+e-1}{2}=e$.
$X_{2}=\frac{1+e-\sqrt{\Delta}}{2}=\frac{1+e-e+1}{2}=1$.
Ces deux solutions sont strictement positives donc :
$\left(e^{3 x+2}+\frac{e}{e^{3 x+2}}=e+1\right) \Leftrightarrow\left(e^{3 x+2}=e\right.$ ou $\left.e^{3 x+2}=1\right)$.

$$
\begin{aligned}
& \left(e^{3 x+2}+\frac{e}{e^{3 x+2}}=e+1\right) \Leftrightarrow(3 x+2=1 \text { ou } 3 x+2=0) \\
& \left(e^{3 x+2}+\frac{e}{e^{3 x+2}}=e+1\right) \Leftrightarrow\left(x=-\frac{1}{3} \text { ou } x=-\frac{2}{3}\right)
\end{aligned}
$$

Exercice 13.
Resoudre dans \mathbb{R} lequation $e^{x}+6 e^{-\pi}=5$

Solution

$$
\left(e^{x}+6 e^{-x}=5\right) \Leftrightarrow\left(e^{x}\left(e^{x}+6 e^{-x}\right)=5 e^{x}\right) \Leftrightarrow\left(e^{2 x}-5 e^{x}+6=0\right) .
$$

Si on pose $X=e^{x}$ cette dernière équation s'écrit :

$$
\left(X^{2}-5 X+6=0\right) \Leftrightarrow((X-2)(X-3)=0) \Leftrightarrow(X=2 \text { ou } X=3)
$$

Ces deux solutions étant strictement positives. On a :

$$
\left(e^{x}+6 e^{-x}=5\right) \Leftrightarrow\left(e^{x}=2 \text { ou } e^{x}=3\right) \Leftrightarrow(x=\ln (2) \text { ou } x=\ln (3))
$$

Exercice $14 . * *$

Solution
On pose $X=e^{x}$ donc l'équation (1) s'écrit $X^{2}+4 m X-2 m+2=0$
$\Delta=(4 m)^{2}-4(2-2 m)=8\left(2 m^{2}+m-1\right)=8(m+1)(2 m-1)$.
Étude du signe de Δ.
Δ est un trinôme du second degré possédant

| m | $-\infty$ | -1 | $\frac{1}{2}$ | $+\infty$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Δ | + | 0 | - | + | deux racines réelles -1 et $\frac{1}{2}$ donc il est positif (du signe de 16) à l'extérieur des racines et négatif à l'intérieur des racines. Attention: comme $X=e^{x}$ les solutions négatives de (2) ne donnent pas des solutions de (1).

- Si $m \in \mid-1 ; \frac{1}{2}[$ alors Δ est strictement négatif donc (2) n'a pas de solution réelle et l'équation (1) n'a pas de solution.
- On pose $E=]-\infty ;-1\left[\cup \frac{1}{2} ;+\infty[\right.$ si $m \in E$ alors $\Delta>0$ et l'équation (2) possède deux solutions réelles distinctes X_{1} et X_{2}.

On a $X_{1} X_{2}=2-2 m$ (produit des racines) et $X_{1}+X_{2}=-4 m$ (somme des racines).

- Si le produit des racines est strictement négatif, c'est-à-dire si $m>1 \quad(2-2 m<0)$ il y a une solution de (2) qui est strictement positive l'autre étant strictement négative, donc il y a une seule solution de (1).
- Si le produit des racines est strictement positif $(m<1)$ alors les deux racines ont le même signe, celui de leur somme ($-4 m$). Donc si $m<0$ et $m \in E$ c'est-à-dire si $m \in]-\infty ;-1[$ alors l'équation (2) admet deux solutions strictement positives et l'équation (1) possè̀de deux solutions.
- Si $m \in] \frac{1}{2} ; 1[$ alors les deux racines de l'équation (2) sont strictement négatives (leur produit est stricṭement positif et leur somme est strictement négative) donc (1) ne possède pas de solution.
- Étude du nombre de solutions pour $m=-1, m=\frac{1}{2}$ et $m=1$.
- Si $m=-1$ alors $\Delta=0$ donc (2) admet une racine double $\left(-\frac{b}{2 a}\right)$ c'est-à-dire $-2 m=2$ et donc l'équation (1) possède une seule solution.
- Si $m=\frac{1}{2}$ alors $\Delta=0$. La racine double vaut $-2 m=-1$ et donc (1) n'a pas de solution.
- Si $m=1$ alors $\Delta>0$ et on a $X_{1} X_{2}=0$ et $X_{1}+X_{2}=-4$ donc $X_{1}=0$ et $X_{2}=-4$. (1) ne possède pas de solution. En résumé :
- Si $m \in]-\infty ;-1\left[\right.$ alors l'équation $e^{2 x}+4 m e^{x}-2 m+2=0$ possède deux solutions.
- Si $m \in[-1 ; 1]$ alors l'équation $e^{2 x}+4 m e^{x}-2 m+2=0$ ne possède pas de solution.
- Si $m \in] 1 ;+\infty\left[\right.$ alors l'équation $e^{2 x}+4 m e^{x}-2 m+2=0$ possède une solution.
- Si $m=-1$ alors l'équation $e^{2 x}+4 m e^{x}-2 m+2=0$ possède une solution.

Exercice 15. **

Solution

1. On reprend le résumé de l'exercice précédent :

- Si $m \in]-\infty ;-1\left[\right.$ alors l'équation $X^{2}+4 m X-2 m+2=0$ possède deux solutions strictement positives : $\Delta=8(m+1)(2 m-1)$.
$X_{1}=-2 m-\sqrt{2(m+1)(2 m-1)} \quad$ et $\quad X_{2}=-2 m+\sqrt{2(m+1)(2 m-1)}$.
Donc les solutions de (1) si $m \in]-\infty ;-1[$ sont :

$$
\begin{aligned}
& x_{1}=\ln (-2 m-\sqrt{2(m+1)(2 m-1)}) \\
& x_{2}=\ln (-2 m+\sqrt{2(m+1)(2 m-1)})
\end{aligned}
$$

- Si $m \in]-1 ; 1]$ alors l'équation $e^{2 x}+4 m e^{x}-2 m+2=0$ ne possède pas de solution.
- Si $m \in] 1 ;+\infty\left[\right.$ alors l'équation $e^{2 x}+4 \dot{m} e^{x}-2 m+2=0$ possède une solution.
L'équation $X^{2}+4 m X-2 m+2=0$ possède deux solutions : $X_{1}=-2 m-\sqrt{2(m+1)(2 m-1)} \quad$ et $\quad X_{2}=-2 m+\sqrt{2(m+1)(2 m-1)}$
On a : $X_{1}<0$ et $X_{2}>0$ donc si $\left.m \in\right] 1 ;+\infty[$ l'équation (1) possède une solution $x_{1}=\ln (-2 m+\sqrt{2(m+1)(2 m-1)})$.
- Si $m=-1$ alors l'équation (2) possède une racine double qui est positive : $X=\frac{-4 m}{2}=-2 m=2$ donc l'équation (1) possède une solution : $e^{x}=2 \Leftrightarrow x=\ln (2)$.

2. On pose $X=e^{x}$ l'équation $e^{2 x}-8 e^{x}+6=0$ s'écrit :

$$
X^{2}-8 X+6=0
$$

$X_{1}=\frac{8-2 \sqrt{10}}{2}=4-\sqrt{10}$ et $X_{2}=\frac{8+2 \sqrt{10}}{2}=4+\sqrt{10}$.
Ces deux solutions sont strictement positives donc :

$$
\left(e^{2 x}-8 e^{x}+6=0\right) \Leftrightarrow\left(e^{x}=4-\sqrt{10} \text { ou } e^{x}=4+\sqrt{10}\right)
$$

$\left(e^{2 x}-8 e^{x}+6=0\right) \Leftrightarrow(x=\ln (4-\sqrt{10})$ ou $x=\ln (4+\sqrt{10}))$.
3. Si $m=-2$ alors l'équation (1) s'écriṭ $e^{2 x}-8 e^{x}-2=0$.

D'après la question 1 comme $m \in]-\infty ;-1[$, on a :

$$
\begin{aligned}
& x_{1}=\ln (-2 m-\sqrt{2(m+1)(2 m-1)})=\ln (4-\sqrt{10}) \\
& x_{2}=\ln (-2 m+\sqrt{2(m+1)(2 m-1)})=\ln (4+\sqrt{10}) .
\end{aligned}
$$

Résoudre une inéquation

Exercice 16.

1. Dímontrer que, polir tout nombre feel 3 , on a Seule siat 112

Solution

1. Pour tout réel x, on a : $-e^{2 x}-1<e^{2 x}-1<e^{2 x}+1$ et comme $e^{2 x}+1>0$, en divisant par $e^{2 x}+1$, on a : $-1<\frac{e^{2 x}-1}{e^{2 x}+1}<1$.
2. Pour tout réel x, on pose : $f(x)=\frac{e^{2 x}-1}{e^{2 x}+1} \cdot f$ est dérivable sur \mathbb{R} et, pour tout réel x, on a : $f^{\prime}(x)=\frac{2 e^{2 x}\left(e^{2 x}+1\right)-2 e^{2 x}\left(e^{2 x}-1\right)}{\left(e^{2 x}+1\right)^{2}}$. $f^{\prime}(x)=\frac{4 e^{2 x}}{\left(e^{2 x}+1\right)^{2}}>0 . f$ est continue et strictement croissante sur \mathbb{R}, $\lim _{x \rightarrow-\infty} f(x)=-1$ et $\lim _{x \rightarrow+\infty} f(x)=1$ donc, d'après un corollaire du théorème des valeurs intermédiaires, pour tout réel a de l'intervalle
|-1;1[, l'équation $f(x)=a$ possède une unique solution réelle.

Exercice 1.7.

Resoudre dans IR

Solution

$$
e^{\left(x^{2}\right)}>\left(e^{x}\right)^{3} e \Leftrightarrow e^{\left(x^{2}\right)}>e^{3 x+1} \Leftrightarrow x^{2}>3 x+1 \Leftrightarrow x^{2}-3 x-1>0 .
$$

On résout $x^{2}-3 x-1=0 . \Delta=9+4=13$ donc il y a deux racines : $x_{1}=\frac{3-\sqrt{13}}{2}$ et " $x_{2}=\frac{3+\sqrt{13}}{2}$ et le polynôme $x^{2}-3 x-1$ est strictement positif à l'extérieur des racines donc:

$$
\left.e^{\left(x^{2}\right)}>\left(e^{x}\right)^{3} e \Leftrightarrow x \in\right]-\infty ; \frac{3-\sqrt{13}}{2}[\cup] \frac{3+\sqrt{13}}{2} ;+\infty[.
$$

L'ensemble des solutions de l'inéquation est donc :

$$
S=\mid-\infty ; \frac{3-\sqrt{13}}{2}[\cup] \frac{3+\sqrt{13}}{2} ;+\infty
$$

Exercice 18.

Resoudre dans

Solution

$$
\left(e^{\left(x^{2}\right)} e^{x}<e^{6}\right) \Leftrightarrow\left(e^{\left(x^{2}+x\right)}<e^{6}\right) \Leftrightarrow\left(x^{2}+x<6\right) \Leftrightarrow\left(x^{2}+x-6<0\right) .
$$

On résout $x^{2}+x-6=0 . \Delta=1+24=25$ donc $x_{1}=2$ et $x_{2}=-3$.
Le polynôme $x^{2}+x-6$ est. strictement négatif à I'intérieur des racines donc $\left(e^{\left(x^{2}\right)} e^{x}<e^{6}\right) \Leftrightarrow(x \in]-3 ; 2[)$.

L'ensemble des solutions de l'inéquation est donc: $S=[-3 ; 2$.

Exercice 19。*

Solution

Cette inéquation est définie pour x tel que $e^{x}-2 \neq 0$ c'est-à-dire si $x \neq \ln (2)$. On pose $X=e^{x}$ l'inéquation s'écrit alors $: \frac{2 X-1}{X-2}<\frac{X}{X+1}$.

$$
\left(\frac{2 X-1}{X-2}<\frac{X}{X+1}\right) \Leftrightarrow\left(\frac{2 X-1}{X-2}-\frac{X}{X+1}<0\right) \Leftrightarrow\left(\frac{X^{2}+3 X-1}{(X-2)(X+1)}<0\right)
$$

Les racines du polynôme $X^{2}+3 X-1$ sont $X_{1}=\frac{-3-\sqrt{13}}{2}$ et $X_{2}=\frac{-3+\sqrt{13}}{2}$. On a $X_{1}<0$ et $X_{2}>0$. Comme $X=e^{x}>0$, on ne conserve que la solution positive.

X	$0 \frac{-3+\sqrt{13}}{2}$	2		$+\infty$
$X^{2}-3 X-1$	-	0	+	+
$X-2$	-	-	0	+
$X+1$	+	+	+	
$\frac{X^{2}-3 X-1}{(X-2)(X+1)}$	+	0	-	+

Donc $\left(\frac{X^{2}-3 X-1}{(X-2)(X+1)}<0\right.$ et $\left.X>0\right) \Leftrightarrow(X \in] \frac{-3+\sqrt{13}}{2}, 2[)$
Et donc $\left(\frac{2 e^{x}-1}{e^{x}-2}<\frac{e^{x}}{e^{x}+1}\right) \Leftrightarrow(x \in] \ln \left(\frac{-3+\sqrt{13}}{2}\right), \ln (2)[)$.
Finalement, l'ensemble des solutions de l'inéquation est:

$$
S=\ln \left(\frac{-3+\sqrt{13}}{2}\right), \ln (2) .
$$

Exercice 20.

1. a est différent de b donc $\left(\frac{e^{\frac{a}{2}}}{2}-\frac{e^{\frac{b}{2}}}{2}\right)^{2}>0$.

En développant le membre de gauche, on obtient: $\frac{e^{a}}{4}+\frac{e^{b}}{4}-\frac{e^{\frac{a+b}{2}}}{2}>0$
soit $\frac{e^{a}+e^{b}}{4}>\frac{e^{\frac{a+b}{2}}}{2}$ donc $\frac{e^{a}+e^{b}}{2}>e^{\frac{a+b}{2}}$.
2. Dans un repère orthonormé (O, \vec{i}, \vec{j}), on trace le graphe de la fonction exponentielle puis on place les points $A\left(a, e^{a}\right)$ et $B\left(b, e^{b}\right)$. On peut remarquer que la corde $[A B]$ est, sur $[a ; b]$, au dessus de la représentation graphique de la fonction exponentielle.
Le milieu K de $[A ; B]$ dont les coordonnées sont $\left(\frac{a+b}{2} ; \frac{e^{a}+e^{b}}{2}\right)$ est au dessus du point $M\left(\frac{a+b}{2} ; e^{\frac{a+b}{2}}\right)$ donc $\frac{e^{a}+e^{b}}{2}>e^{\frac{a+b}{2}}$.

Représentation graphique de la fonction exponentielle.
\checkmark Résoudre un système d'équations

Exercice 21.

Solution

$\left\{\begin{array}{l}e^{y-x}=e \\ \frac{e^{2 x}}{e^{y}}=\frac{1}{e^{3}}\end{array} \Leftrightarrow\left\{\begin{array}{l}e^{y-x}=e \\ e^{2 x-y}=e^{-3}\end{array} \Leftrightarrow\left\{\begin{array}{l}y-x=1 \\ 2 x-y=-3\end{array} \Leftrightarrow\left[\begin{array}{l}y=x+1 \\ x=-2\end{array} \Leftrightarrow\left[\begin{array}{l}x=-2 \\ y=-1\end{array}\right]\right.\right.\right.\right.$.

Exercice $2 \boldsymbol{2}$.

Resoudre dms x^{2}, le sithene

Solution

On pose $X=e^{2 x+1}$. et $Y=e^{y}$. On résout le système :

$$
(S)\left\{\begin{array}{l}
X-Y=-e \\
X+Y=5 e
\end{array}\right.
$$

En additionnant on obtient $2 X=4 e$ donc $X=2 e$ et en retranchant on obtient $2 Y=6 e$ donc $Y=3 e$.
Comme nous n'avons pas raisonné par équivalence, il faut vérifier que $(2 e, 3 e)$ est solution de (S). On a $: 2 e-3 e=-e$ et $2 e+3 e=5 e$.

$$
(S) \Leftrightarrow\left\{\begin{array}{l}
X=2 e \\
Y=3 e
\end{array}\right.
$$

Comme ces deux solutions sont strictement positives, on a :
$\left\{\begin{array}{l}e^{2 x+1}-e^{y}=-e \\ e^{2 x+1}+e^{y}=5 e\end{array} \Leftrightarrow\left\{\begin{array}{l}e^{2 x+1}=2 \dot{e} \\ e^{y}=3 e\end{array} \Leftrightarrow\left\{\begin{array}{l}2 x+1=\ln (2 e) \\ y=\ln (3 e)\end{array} \Leftrightarrow\left\{\begin{array}{l}2 x+1=1+\ln (2) \\ y=1+\ln (3)\end{array}\right.\right.\right.\right.$.
Finalement $\left\{\begin{array}{l}e^{2 x+1}-e^{y}=-e \\ e^{2 x+1}+e^{y}=5 e\end{array} \Leftrightarrow\left[\begin{array}{l}x=\frac{\ln (2)}{2} \\ y=1+\ln (3)\end{array}\right.\right.$.

Exercice 23.

On pose $X=e^{2 x-1}$ et $Y=e^{3-y}$. On résout le système :

$$
\left\{\begin{array} { l }
{ X + Y = 5 e } \\
{ 2 X - 3 Y = 5 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ X = 5 e - Y } \\
{ 2 (5 e - Y) - 3 Y = 5 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ X = 5 e - Y } \\
{ Y = 2 e - 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
X=3 e+1 \\
Y=2 e-1
\end{array}\right.\right.\right.\right.
$$

Comme ces deux solutions sont strictement positives, on a :

$$
\left\{\begin{array} { l }
{ e ^ { 2 x - 1 } + e ^ { 3 - y } = 5 e } \\
{ 2 e ^ { 2 x - 1 } - 3 e ^ { 3 - y } = 5 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
e^{2 x-1}=3 e+1 \\
e^{3-y}=2 e-1
\end{array}\right.\right.
$$

$$
\left\{\begin{array} { l }
{ e ^ { 2 x - 1 } + e ^ { 3 - y } = 5 e } \\
{ 2 e ^ { 2 x - 1 } - 3 e ^ { 3 - y } = 5 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ 2 x - 1 = \operatorname { l n } (3 e + 1) } \\
{ 3 - y = \operatorname { l n } (2 e - 1) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=\frac{1}{2} \ln (3 e+1)+\frac{1}{2} \\
y=3-\ln (2 e-1)
\end{array} .\right.\right.\right.
$$

Exercice 24.

Solution

$\left\{\begin{array}{l}e^{x} \times e^{y}=5 \\ x \times y=\frac{1}{2}\end{array} \Leftrightarrow\left\{\begin{array}{l}e^{x+y}=5 \\ x y=\frac{1}{2}\end{array} \Leftrightarrow\left\{\begin{array}{l}x+y=\ln (5) \\ x y=\frac{1}{2}\end{array}\right.\right.\right.$. Les solutions de ce dernier
système sont les solutions de l'équation de second degré :

$$
X^{2}-X \ln (5)+\frac{1}{2}=0
$$

$\Delta=\ln ^{2}(5)-2$. Ce discriminant étant strictement positif $(\Delta \approx 0.59)$,
on a $: X_{1}=\frac{\ln (5)-\sqrt{\ln ^{2}(5)-2}}{2}$ et $X_{2}=\frac{\ln (5)+\sqrt{\ln ^{2}(5)-2}}{2}$.
Si on désigne par S l'ensemble solution du système $\left\{\begin{array}{l}e^{x} \times e^{y}=5 \\ x \times y=\frac{1}{2}\end{array}\right.$, on a :

$$
S=\left\{\left(X_{1}, X_{2}\right) ;\left(X_{2}, X_{1}\right)\right\} .
$$

\checkmark Encadrement de e

Exercice 25.

Solution

1. On a $g^{\prime}(x)=-\frac{x^{2}}{2} e^{-x}$ et $h^{\prime}(x)=x(1-x) e^{-x}$. Sur $[0 ; 1], g$ est
strictement décroissante et h est strictement croissante. Comme $g(0)=h(0)=1$, pour tout x appartenant à $[0 ; 1$ on a $g(x)<1$ et $h(x)>1$.
2. Comme $g(1)=2.5 \times \frac{1}{e}$ et $h(1)=3 \times \frac{1}{e}$ on a : $2.5<e<3$.

Remarque : on montre plus généralement que si $n \geq 2$ alors $1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}<e<1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}+\frac{1}{n!}$.
Ce qui s'écrit encore : $0<e-\left(1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)<\frac{1}{n!}$.
Application : pour $n=10$ on obtient :
$1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{10!}=\frac{9864101}{3628800} \approx 2.7182818011$.
$\frac{1}{10!}=\frac{1}{3628800}<10^{-6}$ donc $e=2.718281$ à 10^{-6} près par défaut.

II. Limites.

\checkmark Limites du cours

Exercice 26.

Solution

- $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=+\infty$. C'est une limite du cours dont voici une démonstration. On pose pour tout $x \geq 0, \varphi(x)=e^{x}-\frac{x^{2}}{2}$. On a $\varphi^{\prime}(x)=e^{x}-\frac{x^{2}}{2} \quad$ et $\quad \varphi^{\prime \prime}(x)=e^{x}-1 . \quad$ Si $\quad x \geq 0 \quad$ alors $\quad e^{x} \geq 1 \quad$ donc $\varphi^{\prime \prime}(x) \geq 0$ et φ^{\prime} est croissante sur $\left[0 ;+\infty\left[\right.\right.$. Comme $\varphi^{\prime}(0)=1$, on a ,pour tout $x \in\left[0 ;+\infty\left[, \varphi^{\prime}(x) \geq 0\right.\right.$ et φ est croissante sur $[0 ;+\infty[$. $\varphi \cdot(0)=1$ donc, pour tout $x \in\left[0 ;+\infty\left[, \varphi(x) \geq 0\right.\right.$ et donc $e^{x} \geq \frac{x^{2}}{2}$.
Pour tout $x \in\left[0 ;+\infty\left[, \frac{e^{x}}{x} \geq \frac{x}{2}\right.\right.$.
Comme $\lim _{x \rightarrow+\infty} \frac{x}{2}=+\infty$, on a $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=+\infty$.
$\lim _{x \rightarrow-\infty} x e^{x}=0$. C'est une limite du cours dont voici une démonstration. On peut écrire $x e^{x}=-\frac{-x}{e^{-x}}$.
$\lim _{x \rightarrow-\infty}-x=+\infty$
$\left.\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=+\infty\right\} \quad \lim _{x \rightarrow-\infty} \frac{e^{-x}}{-x}=+\infty$ d'où $\lim _{x \rightarrow-\infty} \frac{-x}{e^{-x}}=0$.

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1 . \text { C'est une limite du cours dont voici une }
$$ démonstration. La fonction exponentielle est dérivable en 0 et sa dérivée en 0 est $1 . \frac{e^{x}-1}{x}$ est le taux d'accroissement de la fonction exponentielle en 0 donc $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$.

\checkmark Limites avec des polynômes

Ceux dont les professeurs ont donné les théorèmes sur les limites des fonctions polynômes ou rationnelles en $+\infty$ ou en $-\infty$ peuvent aller plus vite.

Exercice 2%

Soit $f(x)=t^{6}$. Déterminer la limite de f en tro fet $=\infty$

Solution

On a $\lim _{x \rightarrow+\infty}(5-x)=-\infty$ et $\lim _{x \rightarrow-\infty} e^{x}=0$ donc d'après le théorème sur la limite de la composée de deux fonctions $\lim _{x \rightarrow+\infty} e^{(5-x)}=0$ et $\lim _{x \rightarrow+\infty} f(x)=0$. De même $\lim _{x \rightarrow-\infty}(5-x)=+\infty$ et $\lim _{x \rightarrow+\infty} e^{x}=+\infty$ donc $\lim _{x \rightarrow-\infty} e^{(5-x)}=+\infty$ et $\lim _{x \rightarrow-\infty} f(x)=+\infty$.

Exercice 28.

Solution

On pose $u(x)=x^{3}-2 x^{2}+3 x+1$, on a $f(x)=e^{u(x)}$.
Pour tout réel non nul $x: u(x)=x^{3}\left(1-\frac{2}{x}+\frac{3}{x^{2}}+\frac{1}{x^{3}}\right)$.
$\lim _{x \rightarrow+\infty}\left(1-\frac{2}{x}+\frac{3}{x^{2}}+\frac{1}{x^{3}}\right)=\lim _{x \rightarrow-\infty}\left(1-\frac{2}{x}+\frac{3}{x^{2}}+\frac{1}{x^{3}}\right)=1 . \quad \lim _{x \rightarrow+\infty} x^{3}=+\infty \quad$ et
$\lim _{x \rightarrow-\infty} x^{3}=-\infty$ donc $\lim _{x \rightarrow-\infty} u(x)=-\infty$ et $\lim _{x \rightarrow+\infty} u(x)=+\infty$.
Comme $\lim _{x \rightarrow-\infty} e^{X}=0$. et $\lim _{x \rightarrow+\infty} e^{X}=+\infty$ d'après le théorème sur la limite de la composé de deux fonctions, on a $\lim _{x \rightarrow-\infty} e^{u(x)}=0$ et $\lim _{x \rightarrow+\infty} e^{u(x)}=+\infty$. Donc $\lim _{x \rightarrow-\infty} f(x)=0$ et $\lim _{x \rightarrow+\infty} f(x)=+\infty$.

Exercice 29.**

Solution

On pose : $u(x)=3 x^{4}-2 x+1$ et $v(x)=-5 x^{3}-x^{2}-1$.
On a : $f(x)=u(x) e^{v(x)}$.
Pour tout x non nul :

$$
u(x)=3 x^{4}\left(1-\frac{2}{3 x^{3}}+\frac{1}{3 x^{4}}\right) \text { et } v(x)=-5 x^{3}\left(1+\frac{1}{5 x}+\frac{1}{5 x^{3}}\right)
$$

On a $\lim _{x \rightarrow-\infty} u(x)=+\infty, \lim _{x \rightarrow+\infty} u(x)=+\infty, \quad \lim _{x \rightarrow-\infty} v(x)=+\infty$ et $\lim _{x \rightarrow+\infty} v(x)=-\infty$.

- Limite de f en $-\infty: \lim _{x \rightarrow-\infty} v(x)=+\infty$ et $\lim _{x \rightarrow+\infty} e^{x}=+\infty$ donc $\lim _{x \rightarrow-\infty} e^{v(x)}=+\infty$. D'autre part $\lim _{x \rightarrow-\infty} u(x)=+\infty \quad$ donc $\lim _{x \rightarrow-\infty} u(x) e^{v(x)}=+\infty . \lim _{x \rightarrow-\infty} f(x)=+\infty$.

Limite de f en $+\infty$: pour tout x tel que $v(x) \neq 0$, on a $f(x)=\frac{u(x)}{v^{2}(x)} \times v^{2}(x) \times e^{v(x)} \cdot \lim _{x \rightarrow+\infty} v(x)=-\infty$ et $\lim _{X \rightarrow-\infty} X^{2} e^{X}=0$ donc $\lim _{x \rightarrow+\infty} v^{2}(x) \times e^{x}=0$.

$$
\frac{u(x)}{v^{2}(x)}=\frac{3 x^{4}}{25 x^{6}} \times \frac{\left(1-\frac{2}{3 x^{3}}+\frac{1}{3 x^{4}}\right)}{\left(1+\frac{1}{5 x}+\frac{1}{5 x^{3}}\right)^{2}}=\frac{3}{25 x^{2}} \times \frac{\left(1-\frac{2}{3 x^{3}}+\frac{1}{3 x^{4}}\right)}{\left(1+\frac{1}{5 x}+\frac{1}{5 x^{3}}\right)^{2}} .
$$

$\lim _{x \rightarrow+\infty}\left(1+\frac{1}{5 x}+\frac{1}{5 x^{3}}\right)^{2}=1, \quad \lim _{x \rightarrow+\infty}\left(1-\frac{2}{3 x^{3}}+\frac{1}{3 x^{4}}\right)=1 \quad$ et $\quad \lim _{x \rightarrow+\infty} \frac{3}{25 x^{2}}=0$ donc $\lim _{x \rightarrow+\infty} \frac{u(x)}{v^{2}(x)}=0$. On a $\lim _{x \rightarrow+\infty} v^{2}(x) \times e^{x}=0$ et $\lim _{x \rightarrow+\infty} \frac{u(x)}{v(x)}=0$ donc
$\lim _{x \rightarrow+\infty} \frac{u(x)}{v^{2}(x)} \times v^{2}(x) \times e^{v(x)}=0$. Finalement $\lim _{x \rightarrow+\infty} f(x)=0$;

\checkmark Limites avec des fonctions rationnelles

Eæercice 30.

Solution

On a $\lim _{x \rightarrow+\infty}(2 x+5)=+\infty$ donc $\lim _{x \rightarrow+\infty} \frac{1}{(2 x+5)}=0$. La fonction exponentielle étant continue en 0 , on a $\lim _{x \rightarrow 0} e^{x}=e^{0}=1$.
D'après le théorème sur la limite de la composée de deux fonctions, on a $\lim _{x \rightarrow+\infty} e^{\frac{1}{2 x+5}}=1$ et $\lim _{x \rightarrow+\infty} f(x)=1$.

Exercice 31.

Solution

On pose $u(x)=\frac{3 x^{5}-2 x+5}{2 x^{4}+5 x^{2}+3}$. Pour tout x non nul, on a :
$u(x)=\frac{3 x^{5}\left(1-\frac{2}{3 x^{4}}+\frac{5}{3 x^{5}}\right)}{2 x^{4}\left(1+\frac{5}{2 x^{2}}+\frac{3}{2 x^{4}}\right)}=\frac{3}{2} x \times \frac{\left(1-\frac{2}{3 x^{4}}+\frac{5}{3 x^{5}}\right)}{\left(1+\frac{5}{2 x^{2}}+\frac{3}{2 x^{4}}\right)}$.

- $\lim _{x \rightarrow+\infty} \frac{\left(1-\frac{2}{3 x^{4}}+\frac{5}{3 x^{5}}\right)}{\left(1+\frac{5}{2 x^{2}}+\frac{3}{2 x^{4}}\right)}=1$ donc $\lim _{x \rightarrow+\infty} u(x)=+\infty$.
$\lim _{X \rightarrow+\infty} e^{X}=+\infty$ donc, d'après le théorème sur la limite de la composée de deux fonctions, on a $\lim _{x \rightarrow+\infty} e^{u(x)}=+\infty$ et $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
- $\lim _{x \rightarrow-\infty} \frac{\left(1-\frac{2}{3 x^{4}}+\frac{5}{3 x^{5}}\right)}{\left(1+\frac{5}{2 x^{2}}+\frac{3}{2 x^{4}}\right)}=1$ donc $\lim _{x \rightarrow-\infty} u(x)=-\infty$.
$\lim _{X \rightarrow-\infty} e^{X}=0$ donc, d'après le théorème sur la limite de la composée de deux fonctions, on a $\lim _{x \rightarrow-\infty} e^{u(x)}=0$ et $\lim _{x \rightarrow-\infty} f(x)=0$.

\checkmark Limites avec des quotients

Exercice 32.

Solution

- Pour tout $x>\frac{2}{3}, \frac{e^{(3 x-2)}}{x}=\frac{3 x-2}{x} \times \frac{e^{(3 x-2)}}{3 x-2}$. Il est clair que $\lim _{x \rightarrow+\infty} \frac{3 x-2}{x}=3$. Comme $\lim _{x \rightarrow+\infty}(3 x-2)=+\infty$ et $\lim _{x \rightarrow+\infty} \frac{e^{x}}{X}=+\infty$, d'après le théorème sur la limite de la composée de deux fonctions, on
a $\lim _{x \rightarrow+\infty} \frac{e^{(3 x-2)}}{3 x-2}=+\infty$ et $\lim _{x \rightarrow+\infty} \frac{e^{(3 x-2)}}{x}=+\infty$. $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
- $\lim _{x \rightarrow-\infty}(3 x-2)=-\infty$ donc $\lim _{x \rightarrow-\infty} e^{3 x-2}=0$.

Comme $\lim _{x \rightarrow-\infty} \frac{1}{x}=0$, on a $\lim _{x \rightarrow-\infty} \frac{e^{(3 x-2)}}{x}=0$ et $\lim _{x \rightarrow-\infty} f(x)=0$.

Exercice 33.

Solution

- $\lim _{x \rightarrow+\infty}(7-2 x)=-\infty$ et $\lim _{x \rightarrow-\infty} e^{X}=0$ donc d'après le théorème sur̀ la limite de la composée de deux fonctions $\lim _{x \rightarrow+\infty} e^{(7-2 x)}=0$. Comme $\lim _{x \rightarrow+\infty} \frac{1}{5 x}=0$, on a $\lim _{x \rightarrow+\infty} \frac{e^{7-2 x}}{5 x}=0$ et $\lim _{x \rightarrow+\infty} f(x)=0$.
- Pour tout x appartenant à $\mathbb{R}^{*}-\{7\}$, on a :

$$
f(x)=\frac{e^{7-2 x}}{5 x}=\frac{7-2 x}{5 x} \times \frac{e^{7-2 x}}{7-2 x} .
$$

On pose $u(x)=\frac{7-2 x}{5 x}$ et $v(x)=\frac{e^{7-2 x}}{7-2 x}$ donc $f(x)=u(x) \times v(x)$.
$\frac{7-2 x}{5 x}=\frac{-2 x\left(1-\frac{7}{2 x}\right)}{5 x}=-\frac{2}{5}\left(1-\frac{7}{2 x}\right)$ donc $\lim _{x \rightarrow-\infty} u(x)=-\frac{2}{5}$.
$\lim _{x \rightarrow-\infty}(7-2 x)=+\infty$ et $\lim _{x \rightarrow+\infty} \frac{e^{X}}{X}=+\infty$ donc $\lim _{x \rightarrow-\infty} v(x)=+\infty$.
Donc $\lim _{x \rightarrow-\infty} u(x) \times v(x)=\lim _{x \rightarrow-\infty} \frac{e^{7-2 x}}{5 x}=-\infty$ et $\lim _{x \rightarrow-\infty} f(x)=-\infty$.

[^0]
Exercice 34.

Solution

- Pour tout x non nul, on a $\frac{5 x-2}{e^{x}+1}=\frac{x\left(5-\frac{2}{x}\right)}{e^{x}\left(1+\frac{1}{e^{x}}\right)}=\frac{x}{e^{x}} \times \frac{5-\frac{2}{x}}{1+\frac{1}{e^{x}}}$.
$\lim _{x \rightarrow+\infty}\left(5-\frac{2}{x}\right)=5$ et $\lim _{x \rightarrow+\infty}\left(1+\frac{1}{e^{x}}\right)=1$ donc $\lim _{x \rightarrow+\infty} \frac{5-\frac{2}{x}}{1+\frac{1}{e^{x}}}=5$.
On sait que $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=+\infty$ donce $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=0$ et $\lim _{x \rightarrow+\infty} \frac{5 x-2}{e^{x}+1}=0$ d'où $\lim _{x \rightarrow+\infty} f(x)=0$.
- $\lim _{x \rightarrow-\infty}(5 x-2)=-\infty$ et $\lim _{x \rightarrow-\infty}\left(e^{x}+1\right)=1$ donc $\lim _{x \rightarrow-\infty} f(x)=-\infty$.

Exercice 35.

Solution

- Pour tout x non nul, on a $\frac{e^{x^{5}}-1}{x}=x^{4} \times \frac{e^{x^{5}}}{x^{5}} \times\left(1-\frac{1}{e^{x^{5}}}\right)$.
$\lim _{x \rightarrow+\infty} x^{5}=+\infty$ et $\lim _{x \rightarrow+\infty} e^{X}=+\infty$, donc d'après le théorème sur la limite de la composée de deux fonctions $\lim _{x \rightarrow+\infty} e^{x^{5}}=+\infty$, d'où $\lim _{x \rightarrow+\infty}\left(1-\frac{1}{e^{x^{5}}}\right)=1$. On sait que $\lim _{x \rightarrow+\infty} x^{5}=+\infty$ et $\lim _{X \rightarrow+\infty} \frac{e^{X}}{X}=+\infty$ donc $\lim _{x \rightarrow+\infty} \frac{e^{x^{5}}}{x^{5}}=+\infty$. Or $\lim _{x \rightarrow+\infty} x^{4}=+\infty$ donc $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
- $\lim _{x \rightarrow-\infty} x^{5}=-\infty$ et $\lim _{x \rightarrow-\infty} e^{x}=0$, donc $\lim _{x \rightarrow-\infty} e^{x^{5}}=0$ et $\lim _{x \rightarrow-\infty}\left(e^{x^{5}}-1\right)=-1$. Comme $\lim _{x \rightarrow-\infty} \frac{1}{x}=0$, on a $\lim _{x \rightarrow-\infty} f(x)=0$.

Exercice 36.

Déterminer: $\lim _{x \rightarrow+\infty} \frac{e^{2 x}+1}{e^{x}-5}$

Solution

Pour tout réel x différent de $\ln 5$, on a :

$$
\frac{e^{2 x}+1}{e^{x}-5}=\frac{e^{2 x}\left(1+\frac{1}{e^{2 x}}\right)}{e^{x}\left(1-\frac{5}{e^{x}}\right)}=e^{x} \times \frac{1+\frac{1}{e^{2 x}}}{1-\frac{5}{e^{x}}} .
$$

$\lim _{x \rightarrow+\infty}\left(1+\frac{1}{e^{2 x}}\right)=1$ et $\lim _{x \rightarrow+\infty}\left(1-\frac{5}{e^{x}}\right)=1$ donc $\lim _{x \rightarrow+\infty} \frac{1+\frac{1}{e^{2 x}}}{1-\frac{5}{e^{x}}}=1$. Comme
$\lim _{x \rightarrow+\infty} e^{x}=+\infty, \lim _{x \rightarrow+\infty} \frac{e^{2 x}+1}{e^{x}-5}=+\infty$.

Exercice 3\%**

1. Nontrer par recurrence que, pour tout rét, stricterment pusitif x et purir tout entier matimel non mil n. onia.
 Montrex que lime $u(x)=+\infty$

Solution

1. Pour tout entier naturel non nul n, on note P_{n} la proposition :
«Pour tout réel strictement positif $x, e^{x}>1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}$ ».
Si on note C la représentation graphique de la fonction exponentielle alors la droite T d'équation $y=x+1$ est la tangente à C au point d'abscisse 0 . La droite T est en dessous de C sur \mathbb{R} (exercice 73) donc $e^{x}>1+x$ et P_{1} est vraie. Soit n un entier naturel non nul. Supposons P_{n} vraie. Soit g la fonction définie sur $[0 ;+\infty[$ par:

$$
g(x)=e^{x}-x-\frac{x^{2}}{2!}-\ldots-\frac{x^{(n+1)}}{(n+1)!}
$$

g est définie et dérivable sur $[0 ;+\infty[$.
$g^{\prime}(x)=e^{x}-1-x-\frac{x^{2}}{2!}-\ldots-\frac{x^{n}}{n!}$. D'après l'hypothèse de récurrence, $g^{\prime}(x)>0$ donc g est strictement croissante sur $[0 ;+\infty[$.
D'autre part $g(0)=1$ donc, pour tout réel x strictement positif, $g(x)>1$ donc $e^{x}>1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\frac{x^{(n+1)}}{(n+1)!}$ et $P_{(n+1)}$ est vraie.
La proposition P_{n} est vraie au rang 1 et est héréditaire donc elle est vraie pour tout entier naturel non nul.
2. $u(x)=\frac{1}{x^{n}}+\frac{1}{x^{(n-1)}}+\frac{1}{x^{(n-2)} \times 2!}+\ldots+\frac{1}{x \times(n-1)!}+\frac{1}{n!}+\frac{x}{(n+1)!}$.
n est un entier naturel non nul fixé donc, pour tout $p \in\{0 ; 1 ; 2 ; \ldots ; n\}$ le nombre $\frac{1}{p!}$ est un nombre fini même si x tend vers $+\infty$.
$\lim _{x \rightarrow+\infty} \frac{x}{(n+1)!}=+\infty$ et pour tout $p \in\{0 ; 1 ; 2 ; \ldots ; n-1\}$, on a $\lim _{x \rightarrow+\infty} \frac{1}{p!x^{(n-p)}}=0$. Ainsi, $\lim _{x \rightarrow+\infty} u_{i}(x)=+\infty$.
3. D'après la question 1 , pour tout entier n non nul et pour tout x strictement positif, $\dot{e}^{x} \geq 1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\frac{x^{(n+1)}}{(n+1)!}$.
Or $1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\frac{x^{(n+1)}}{(n+1)!}=x^{n} \times u(x)$ donc $e^{x} \geq x^{n} \times u(x)$.
D'où $\frac{e^{x}}{x^{n}} \geq u(x)$ avec $\lim _{x \rightarrow+\infty} u(x)=+\infty$.
Un théorème de comparaison donne alors $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{n}}=+\infty$.
\checkmark Limite d'un taux d'accroissement

Exercice 38.

Solution

$\lim _{x \rightarrow 0} 3 x=0$ et $\lim _{X \rightarrow 0} \frac{e^{X}-1}{X}=1$ (cours). D'après le théorème sur la limite
de la composée de deux fonctions, on a $\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{3 x}=1$.
Exercice 39.

Solution

Pour tout x non nul, on a $\frac{e^{5 x}-1}{x}=5 \times \frac{e^{5 x}-1}{5 x}, \lim _{x \rightarrow 0} 5 x=0$ et $\lim _{X \rightarrow 0} \frac{e^{X}-1}{X}=1$. D'après le théorème sur la limite de la composée de deux fonctions, on obtient $\lim _{x \rightarrow 0} \frac{e^{5 x}-1}{5 x}=1 .$. Ainsi, $\lim _{x \rightarrow 0} \frac{e^{5 x}-1}{x}=5$.

Exercice 40.

Solution

Pour tout x non nul, $\frac{e^{x^{3}}-1}{x}=x^{2} \times \frac{e^{x^{3}}-1}{x^{3}} \quad \lim _{x \rightarrow 0} x^{3}=0$ et $\lim _{X \rightarrow 0} \frac{e^{X}-1}{X}=1$. D'après le théorème sur la limite de la composée de deux fonctions, on obtient $\lim _{x \rightarrow 0} \frac{e^{x^{3}}-1}{x^{3}}=1$. Comme $\lim _{x \rightarrow 0} x^{2}=0$, on a :

$$
\lim _{x \rightarrow 0} \frac{e^{x^{3}}-1}{x}=0 .
$$

Exercice 41.

Solution

$\frac{e^{\sin (x)}-1}{x}$ est le taux d'accroissement en 0 de la fonction $x \mapsto e^{\sin (x)}$. Cette fonction est dérivable en 0 et sa dérivée en 0 est $\cos (0) e^{\sin (0)}=1$. Ainsi $\lim _{x \rightarrow 0} \frac{e^{\sin (x)}-1}{x}=1$.
Remarque : on peut aussi écrire $\frac{e^{\sin (x)}-1}{x^{\sin }(x)}-1 . \frac{e^{\sin (x)}}{\sin (x)^{2}} \times \frac{\sin }{x}$.
$\left.\begin{array}{l}\lim _{x \rightarrow 0} \sin (x)=0 \\ \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1\end{array}\right\}$ donc $\lim _{x \rightarrow 0} \frac{e^{\sin (x)}-1}{\sin (x)}=1$. D'autre part $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ d'où

$$
\lim _{x \rightarrow 0} \frac{e^{\sin (x)}-1}{x}=1 .
$$

Exercice 42.*

Determiner lim $\operatorname{ca}^{3}-1$

Solution

On utilise la formule $\cos (2 a)=1-2 \sin ^{2}(a)$.
Pour tout réel x, on a : $1-\cos (x)=2 \sin ^{2}\left(\frac{x}{2}\right)$.
Pour tout réel x différent de $0[\bmod 2 \pi]$, on a :

$$
\begin{aligned}
& \therefore \frac{-e^{x^{2}}-1}{1-\cos (x)}=\frac{e^{x^{2}}-1}{x^{2}} \times \frac{x^{2}}{1-\cos (x)}=\frac{e^{x^{2}}-1}{x^{2}} \times \frac{x^{2}}{2 \sin ^{2}\left(\frac{x}{2}\right)} \\
& \lim _{x \rightarrow 0} x^{2}=0 \text { et } \lim _{X \rightarrow 0} \frac{e^{X}-1}{X}=1 \text { donc } \lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{x^{2}}=1 \\
& \frac{x^{2}}{2 \sin ^{2}\left(\frac{x}{2}\right)}=2\left(\frac{\frac{x}{2}}{\sin \left(\frac{x}{2}\right)}\right)^{2} \cdot \lim _{x \rightarrow 0} \frac{x}{2}=0 \text { et } \lim _{X \rightarrow 0} \frac{X}{\sin (X)}=1
\end{aligned}
$$

D'après le théorème sur la limite de la composée de deux fonctions, on a

$$
\lim _{x \rightarrow 0} \frac{\frac{x}{2}}{\sin \left(\frac{x}{2}\right)}=1
$$

Comme la fonction $x \mapsto 2 x^{2}$ est continue en $1, \lim _{x \rightarrow 1} 2 x^{2}=2$ et d'après le théorème sur la limite de la composée de deux fonctions on a :

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{2 \sin ^{2}\left(\frac{x}{2}\right)}=\lim _{x \rightarrow 0} 2 \times\left(\frac{\frac{x}{2}}{\sin \left(\frac{x}{2}\right)}\right)^{2}=2 .
$$

Finalement, $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1}{1-\cos (x)}=2$.

Limites avec des racines carrées
Exercice 4.

Solution

- Quand x tend vers 0 par valeurs supérieures.

Pour tout $x \in \mathbb{R}_{+}^{*}, \quad f(x)=\frac{e^{x}-1}{\sqrt{x}}=\frac{e^{x}-1}{x} \times \sqrt{x}$.

$$
\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{x}=1 \text { et } \lim _{x \rightarrow 0^{+}} \sqrt{x}=0 \text { donc } \lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{\sqrt{x}}=0 .
$$

- Quand x tend vers $+\infty$.

Pour tout $x \in \mathbb{R}_{+}^{*}, \quad f(x)=\frac{e^{x}-1}{\sqrt{x}}=\sqrt{x} \times \frac{e^{x}}{x}-\frac{1}{\sqrt{x}} \cdot \quad \lim _{x \rightarrow+\infty} \sqrt{x}=+\infty$, $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=+\infty$. et $\lim _{x \rightarrow+\infty} \frac{1}{\sqrt{x}}=0$ donc $\lim _{x \rightarrow+\infty} \frac{e^{x}-1}{\sqrt{x}}=+\infty$.

Exercice 44.

Solution

Pour tout $x \in \mathbb{R}_{+}^{*}, f(x)=\sqrt{x} \times e^{-x^{2}}=\frac{x^{2}}{e^{x^{2}}} \times \frac{1}{x \sqrt{x}}$.
$\lim _{x \rightarrow+\infty} x^{2}=+\infty$ et $\lim _{X \rightarrow+\infty} \frac{X}{e^{X}}=0$ donc, d'après le theorème sur la limite de la composée de deux fonctions, on a $\lim _{x \rightarrow+\infty} \frac{x^{2}}{e^{x^{2}}}=0$.
Comme $\lim _{x \rightarrow+\infty} \frac{1}{x \sqrt{x}}=0$, on a: $\lim _{x \rightarrow+\infty} \sqrt{x} \times \cdot e^{-x^{2}}=0$.
Exercice $45 . *$
Determiner la himite de $f(x)=\frac{\sqrt{x}}{x-1}$ ex: 1 en 1 .

Solution

- Quand x tend vers I par valeurs supérieures:
$f(x)=\sqrt{x} \times \frac{1}{x-1} e^{\frac{1}{x-1}} . \lim _{x \rightarrow 1^{+}} \sqrt{x}=1 \quad$ (car la fonction racine est continue
en 1). $\lim _{x \rightarrow 1^{+}} \frac{1}{x-1}=+\infty$ et $\lim _{x \rightarrow+\infty} e^{x}=+\infty$ donc $\lim _{x \rightarrow 1^{+}} e^{\frac{1}{x-1}}=+\infty$.
Conclusion : $\lim _{x \rightarrow 1^{+}} \frac{\sqrt{x}}{x-1} e^{\frac{1}{x-1}}=+\infty$.
- Quand x tend vers I par valeurs inférieures.
$f(x)=\sqrt{x} \times \frac{1}{x-1} e^{\frac{1}{x-1}} \cdot \lim _{x \rightarrow 1^{-}} \sqrt{x}=1 \cdot \lim _{x \rightarrow 1^{-}} \frac{1}{x-1}=-\infty$ et $\lim _{x \rightarrow-\infty} X e^{x}=0$ donc $\lim _{x \rightarrow 1^{-}} \frac{1}{x-1} e^{\frac{1}{x-1}}=0$. Conclusion : $\lim _{x \rightarrow 1^{-}} \frac{\sqrt{x}}{x-1} e^{\frac{1}{x-1}}=0$.

\checkmark Limites avec des fonctions trigonométriques

Exercice 46.

Soit $f(x)=x^{3} e^{\text {cos(x)}}$. Determiner la limite de f en $+\infty$ et en

Solution

Pour tout réel x, on a : $-1 \leq \cos (x) \leq 1$. Comme la fonction exponentielle est croissante sur \mathbb{R}, on a : $\frac{1}{e} \leq e^{\cos (x)} \leq e$.

Solution

Pour tout réel x différent de $k \pi(k \in \mathbb{Z})$:

$$
\frac{e^{x}-e^{-x}}{\sin (x)}=e^{-x} \times \frac{e^{2 x}-1}{\sin (x)}=e^{-x} \times \frac{e^{2 x}-1}{x} \times \frac{x}{\sin (x)} .
$$

$\lim _{x \rightarrow 0} e^{-x}=1$ et $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}=2 \times \lim _{x \rightarrow 0} \frac{e^{2 x}-1}{2 x}=2 \times 1=2$.
$\lim _{x \rightarrow 0} \frac{x}{\sin (x)}=1$ (car on sait que $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$) donc $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin (x)}=2$.

\checkmark Limites avec des logarithmes

Exercice 48.

 Deterniner $\lim f(x)$ et lint $f(r)$

Solution

- Pour tout réel x, on a $f(x)=e^{-x} \times \ln \left(1+e^{x}\right)=\frac{\ln \left(1+e^{x}\right)}{e^{x}}$.

De plus $\lim _{x \rightarrow-\infty} e^{x}=0$ et $\lim _{X \rightarrow 0} \frac{\ln (1+X)}{X}=1$ (taux d'accroissement en 0 de la fonction $x \mapsto \ln (1+x))$ donc, d'après le théorème sur la limite de la composée de deux fonctions, on a : $\lim _{x \rightarrow-\infty} \frac{\ln \left(1+e^{x}\right)}{e^{x}}=1$ soit

$$
\lim _{x \rightarrow-\infty} f(x)=1 \text {. }
$$

- Pour tout réel x on a :
$f(x)=e^{-x} \times \ln \left(e^{x}\left(1+e^{-x}\right)\right)=e^{-x}\left(\ln \left(e^{x}\right)+\ln \left(1+e^{-x}\right)\right)$
donc $f(x)==x e^{-x}+e^{-x} \ln \left(1+e^{-x}\right)=\frac{x}{e^{x}}+e^{-x} \ln \left(1+e^{-x}\right)$
On sait que $\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=+\infty$ donc $\lim _{x \rightarrow+\infty} \frac{x}{e^{x}}=0$.
$\lim _{x \rightarrow+\infty} e^{-x}=0$ et $\lim _{X \rightarrow 0} \ln (1+X)=0$ donc, d'après le théorè̀me sur la limite de la composée de deux fonctions, on a $\lim _{x \rightarrow+\infty} \ln \left(1+e^{-x}\right)=0$ d'où $\lim _{x \rightarrow+\infty} e^{-x} \ln \left(1+e^{-x}\right)=0$. Finalement $\lim _{x \rightarrow+\infty} f(x)=0$.

III. Continurité

Exercice 49.

Solution

1. Pour tout $x \in \mathbb{R}^{*}$, on pose : $u(x)=-\frac{1}{x^{2}}$ et $v(x)=e^{x}$.

La fonction u est continue sur \mathbb{R}^{*} et la fonction v est continue sur \mathbb{R} avec $u\left(\mathbb{R}^{*}\right) \subset \mathbb{R}$ donc $v \circ u$, c'est-à-dire f, est continue sur \mathbb{R}^{*}.
2. $\lim _{x \rightarrow 0}\left(-\frac{1}{x^{2}}\right)=-\infty$ et $\lim _{x \rightarrow+\infty} e^{X}=+\infty$ donc, d'après le théorème sur la. limite de la composée de deux fonctions, on a : $\lim _{x \rightarrow 0} e^{-\frac{1}{x^{2}}}=0$. Comme $f(0)=0$, la fonction f est continue en 0.

Exercice 50.

Solution

Pour tout x appartenant à \mathbb{R}^{*}, on a $f(x)=\frac{1}{\frac{e^{x}-1}{x}} \cdot \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
donc $\lim _{x \rightarrow 0} f(x)=1=f(0)$. La fonction f est continue en 0 .
Exercice 51.

Solution

Les fonctions $x \mapsto \sin (x)$ et $x \mapsto e^{2 x}-e^{x} \quad$ sont continues sur $\left[-\frac{\pi}{2} ; 0[\cup] 0 ; \frac{\pi}{2}\right]$.
Sur $\left[-\frac{\pi}{2} ; 0[\right.$ et sur $\left.] 0 ; \frac{\pi}{2}\right], f$ est un quotient de fonctions continues (le dénominateur ne s'annulant pas) donc f est continue sur $\left[-\frac{\pi}{2} ; 0[\cup] 0 ; \frac{\pi}{2}\right]$.
Pour x non nul on a : $f(x)=\frac{e^{x}\left(e^{x}-1\right)}{\sin (x)}=e^{x} \times \frac{x}{\sin (x)} \times \frac{e^{x}-1}{x}$.
$\lim _{x \rightarrow 0} e^{x}=1$ car la fonction exponentielle est continue en 0.

D'autre part on sait que $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ et $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$ donc $\lim _{x \rightarrow 0} f(x)=1=f(0)$ et f est continue en 0.
La fonction f est continue sur $\left[-\frac{\pi}{2} ; 0[\cup] 0 ; \frac{\pi}{2}\right]$ et en 0 donc f est continue sur $\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$.

IV. Dérivation

\checkmark Techniques élémentaires

Exercice 52.

Determiner la fonicion derive the fa fonction definie sur fil bat $f(x)-x^{2}=$

Solution

Pour tout réel x, on pose $u(x)=x^{2}$ et $v(x)=-x$.
$f(x)=u(x) \times e^{v(x)}$.
Les fonctions u et v sont dérivables sur \mathbb{R} et $u^{\prime}(x)=2 x, v^{\prime}(x)=-1$. Donc f est dérivable sur \mathbb{R} et pour tout réel x on a: $f^{\prime}(x)=u^{\prime}(x) \times e^{v(x)}+u(x) \times v^{\prime}(x) e^{v(x)}=2 x e^{-x}-x^{2} e^{-x}$.

$$
f(x)=x(2-x) e^{-x} .
$$

Exercice 53.

Solution

1. Pour tout réel x, on pose $u(x)=\sin (x)$ et $v(x)=2 x$. $f(x)=u(x) \times e^{u(x)}$. $f^{\prime}(x)=u^{\prime}(x) \times e^{v(x)}+u(x) \times v^{\prime}(x) \times e^{v(x)}$. $f^{\prime}(x)=e^{2 x} \times \cos (x)+2 e^{2 x} \times \sin (x)$.
Pour tout réel $x: f^{\prime}(x)=e^{2 x}(2 \sin (x)+\cos (x))$.
2. Pour tout réel x, on'pose $u(x)=\cos (x)$ et $v(x)=-2 x$.
$g(x)=u(x) \times e^{\nu(x)}$.
$g^{\prime}(x)=u^{\prime}(x) \times e^{v(x)}+u(x) \times v^{\prime}(x) \times e^{v(x)}$.
$g^{\prime}(x)=-\sin (x) \times e^{-2 x}-2 \cos (x) \times e^{-2 x}$.
Pour tout réel $x: g^{!}(x)=-e^{-2 x}(2 \cos (x)+\sin (x))$.
3. Pour tout réel x de $]-\frac{\pi}{2} ; \frac{\pi}{2}[$, on pose $u(x)=\tan (x)$ et $v(x)=-x . h(x)=u(x) \times e^{v(x)}$.
$h^{\prime}(x)=u^{\prime}(x) \times e^{v(x)}+u(x) \times v^{\prime}(x) \times e^{v(x)}$.
$h^{\prime}(x)=\left(1+\tan ^{2}(x)\right) \times e^{-x}-\tan (x) \times e^{-x}$. Pour tout réel x de $]-\frac{\pi}{2} ; \frac{\pi}{2}[:$

$$
h^{\prime}(x)=e^{-x}\left(1-\tan (x)+\tan ^{2}(x)\right)
$$

Exercice 54:

Solution

Pour tout réel x de \mathbb{R}_{+}^{*} on pose $u(x)=\sqrt{x}$ et $v(x)=2 x$.

$$
\begin{aligned}
& f(x)=u(x) \times e^{v(x)} \cdot f^{\prime}(x)=u^{\prime}(x) \times e^{v(x)}+u(x) \times v^{\prime}(x) \times e^{v(x)} \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \times e^{2 x}+2 \sqrt{x} \times e^{2 x} . \text { Pour tout réel } x \text { de } \mathbb{R}_{+}^{*}:
\end{aligned}
$$

$$
f^{\prime}(x)=e^{2 x}\left(\frac{1}{2 \sqrt{x}}+2 \sqrt{x}\right)
$$

Exercice 55.

Solution

Pour tout réel x de \mathbb{R}, on pose $u(x)=2 e^{x}-3 x$ et $v(x)=x^{2}+e^{x}$ donc $f(x)=\frac{u(x)}{v(x)}$. Les fonctions u et v sont dérivables sur \mathbb{R}.
$u^{\prime}(x)=2 e^{x}-3$ et $v^{\prime}(x)=2 x+e^{x}$.
Comme pour tout réel $x, v(x) \neq 0$, la fonction f est dérivable sur \mathbb{R}.

$$
f^{\prime}(x)=\frac{u^{\prime}(x) \times v(x)-u(x) \times v^{i}(x)}{v^{2}(x)}
$$

$$
\begin{gathered}
f^{\prime}(x)=\frac{\left(2 e^{x}-3\right)\left(x^{2}+e^{x}\right)-\left(2 e^{x}-3 x\right)\left(2 x+e^{x}\right)}{\left(x^{2}+e^{x}\right)^{2}} . \\
f^{\prime}(x)=\frac{2 e^{2 x}+2 x^{2} e^{x}-3 e^{x}-3 x^{2}-2 e^{2 x}-x e^{x}+6 x^{2}}{\left(x^{2}+e^{x}\right)^{2}} . \\
f^{\prime}(x)=\frac{\left(2 x^{2}-x-3\right) e^{x}+3 x^{2}}{\left(x^{2}+e^{x}\right)^{2}} .
\end{gathered}
$$

\checkmark Dérivabilité en a

Exercice 56.
 $f(0)=0$. Montrer que 1 est waitimice derivable en 0

Solution

Continuité en 0 .
$\lim _{x \rightarrow 0^{+}}-\frac{1}{x}=-\infty$ et $\lim _{x \rightarrow-\infty} e^{x}=0$ donc, d'après le théorème sur la limite de la composée de deux fonctions', on a $\lim _{x \rightarrow 0^{+}} e^{-\frac{1}{x}}=0$.
Ainsi $\lim _{x \rightarrow 0^{+}} x e^{-\frac{1}{x}}=0$ et $f(0)=0$ donc f est continue en 0 .
Dérivabilité en 0 ..
Le taux d'accroissement de f en 0 est $\frac{f(x)-f(0)}{x}=e^{-\frac{1}{x}}$.
Comme $\lim _{x \rightarrow 0^{+}} e^{-\frac{1}{x}}=0, f$ est dérivable en 0 et $f^{\prime}(0)=0$.

Exercice 5%

Solution

1. La fonction $x \mapsto e^{-\frac{1}{x^{2}}}$ est continue sur \mathbb{R}^{*}. (composée de fonctions
continues) la fonction $x \mapsto \sin (x)$ est continue sur \mathbb{R}^{*} donc la fonction f est continue sur \mathbb{R}^{*} (produit de fonctions continues).
Continuité en 0 .
$\lim _{x \rightarrow 0} \sin (x)=0$ car la fonction sinus est continue en 0 .
$\lim _{x \rightarrow 0} \frac{-1}{x^{2}}=-\infty$ et $\lim _{x \rightarrow-\infty} e^{x}=0$ donc $\lim _{x \rightarrow 0} e^{\frac{-1}{x^{2}}}=0$.
Donc $\lim _{x \rightarrow 0}\left(\sin (x) \times e^{\frac{-1}{x^{2}}}\right)=0$ et $\lim _{x \rightarrow 0} f(x)=0=f(0)$.
La fonction f est donc continue en 0 . Finalement f est continue sur \mathbb{R}.
2. La fonction $x \mapsto e^{-\frac{1}{x^{2}}}$ est dérivable sur \mathbb{R}^{*} (composée de fonctions dérivables) la fonction $x \mapsto \sin (x)$ est dérivable sur \mathbb{R}^{*} donc la fonction f est dérivable sur \mathbb{R}^{*} (produit de fonctrions dérivables).
Dérivabilité en 0.
Pour tout réel x non nul, $\frac{f(x)-f(0)}{x}=\frac{f(x)}{x}=\frac{\sin (x)}{x} \times e^{\frac{-1}{x^{2}}}$.
On sait que $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ et $\lim _{x \rightarrow 0} e^{\frac{-1}{x^{2}}}=0$ donc $\lim _{x \rightarrow 0}\left(\frac{\sin (x)}{x} \times e^{\frac{-1}{x^{2}}}\right)=0$.
Comme $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}=0$, la fonction f est dérivable en 0 et on a $f^{\prime}(0)=0$.

Exercice 58.

1. La fonction $x \mapsto e^{-\frac{1}{x^{2}}}$ est continue sur \mathbb{R}^{*} (composée de fonctions continues) et la fonction $x \mapsto \cos (x)$ est continue sur \mathbb{R}^{*} donc la fonction f est continue sur \mathbb{R}^{*} (produit de fonctions continues).
$\lim _{x \rightarrow 0} \cos (x)=1$ car la fonction cosinus est continue en 0 .
$\lim _{x \rightarrow 0} \frac{-1}{x^{2}}=-\infty$ et $\lim _{x \rightarrow-\infty} e^{X}=0$ donc $\lim _{x \rightarrow 0} e^{\frac{-1}{x^{2}}}=0$.
Donc $\lim _{x \rightarrow 0}\left(\cos (x) \times e^{\frac{-1}{x^{2}}}\right)=0$ et $\lim _{x \rightarrow 0} f(x)=0=f(0)$.
La fonction f est donc continue en 0 . Finalement f est continue sur \mathbb{R}.
2. La fonction $x \mapsto e^{-\frac{1}{x^{2}}}$ est dérivable sur \mathbb{R}^{*} (composée de fonctions dérivables) la fonction $x \mapsto \cos (x)$ est dérivable sur \mathbb{R}^{*}, donc la fonction f est dérivable sur \mathbb{R}^{*} (produit de fonctions dérivables).
Dérivabilité en 0 .
Pour tout réel x non nul,
$\frac{f(x)-f(0)}{x}=\frac{f(x)}{x}=-x \times \cos (x) \times\left(\frac{-1}{x^{2}}\right) \times e^{\frac{-1}{x^{2}}}$.
On a $\lim _{x \rightarrow 0}(-x \times \cos (x))=0, \lim _{x \rightarrow 0} \frac{-1}{x^{2}}=-\infty$ et $\lim _{X \rightarrow-\infty} X e^{X}=0$ donc $\lim _{x \rightarrow 0}\left(\frac{-1}{x^{2}}\right) e^{\frac{-1}{x^{2}}}=0$. D'où $\lim _{x \rightarrow 0}\left(x \cos (x)\left(\frac{-1}{x^{2}}\right) \times e^{\frac{-1}{x^{2}}}\right)=0$.
Comme $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=0$, la fonction f est dérivable en 0 et $f^{\prime}(0)=0$.

Exercice 59.

Solution

1. La fonction $x \mapsto e^{-\frac{1}{x}}$ est continue sur \mathbb{R}_{+}^{*} (composée de fonctions continues) et la fonction $x \mapsto \sqrt{x}$ est continue sur \mathbb{R}_{+}^{*} (même sur \mathbb{R}_{+}) donc la fonction f est continuie sur \mathbb{R}_{+}^{*} (produit de fonctions continues).
Continuité en $0: \lim _{x \rightarrow 0} \sqrt{x}=0$ car la fonction racine est continue en 0 .
$\lim _{x \rightarrow 0^{+}} \frac{-1}{x}=-\infty$ et $\lim _{x \rightarrow-\infty} e^{x}=0$ donc $\lim _{x \rightarrow 0} e^{\frac{-1}{x}}=0$.
Donc $\lim _{x \rightarrow 0^{+}}\left(\sqrt{x} \times e^{\frac{-1}{x}}\right)=0$ et $\lim _{x \rightarrow 0} f(x)=0=f(0)$. La fonction $f \cdot$ est donc continue en 0 . Finalement f est continue sur \mathbb{R}.
2. La fonction $x \mapsto e^{-\frac{1}{x}}$ est dérivable sur \mathbb{R}_{+}^{*} (composée de fonctions dérivables) et la fonction $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_{+}^{*} donc la fonction f est dérivable sur \mathbb{R}_{+}^{*} (produit de fonctions dérivables).
Dérivabilité en 0 .
Si $x>0$ alors $\frac{f(x)-f(0)}{x}=\frac{f(x)}{x}=\frac{\sqrt{x}}{x} \times e^{\frac{-1}{x}}=-\sqrt{x} \times\left(\frac{-1}{x}\right) \times e^{\frac{-1}{x}}$.
On sait que $\lim _{x \rightarrow 0^{+}}(-\sqrt{x})=0$.
$\lim _{x \rightarrow 0^{+}} \frac{-1}{x}=-\infty \quad$ et $\quad \lim _{x \rightarrow-\infty} X e^{x}=0$ donc $\lim _{x \rightarrow 0^{+}}\left(\frac{-1}{x}\right) \times e^{\frac{-1}{x}}=0$ d'où $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}=0$. La fonction f est dérivable en 0 et on a :

$$
f^{\prime}(0)=0 \text {. }
$$

\checkmark Exponentielle et polynôme

Exercice 60.
Determiner: lensemile. sir Jegnet lia, Jomction. f. definie , war

Solution

Pour tout réel x; on pose $u(x)=-x^{2}$, donc $f(x)=e^{u(x)}$. Comme les fonctions u et exponentielle sont dérivables sur \mathbb{R}, f est dérivable sur \mathbb{R}. $f^{\prime}(x)=u^{\prime}(x) e^{u(x)}=-2 x e^{-x^{2}}$ donc $f^{\prime}(x)=-2 x e^{-x^{2}}$.

Exercice 61.

Solution

Pour tout réel x, on pose $u(x)=5 x^{3}-3 x^{2}+2 x-1 . f(x)=e^{u(x)}$. Comme les fonctions u et exponentielle sont dérivables sur \mathbb{R}, f est dérivable sur \mathbb{R}. Pour tout réel x :
$f^{\prime}(x)=u^{\prime}(x) e^{u(x)} \cdot f^{\prime}(x)=\left(15 x^{2}-6 x+2\right) e^{\left(5 x^{3}-3 x^{2}+2 x-1\right)}$

\checkmark Exponentielle et fonction rationnelle

Exercice 62.

Solution

Pour tout réel x différent de 1 et de -1 , on pose $u(x)=\frac{x}{x^{2}-1}$. On a $f^{\prime}(x)=e^{u(x)}$. La fonction u est. une fonction rationnelle définie pour x différent de 1 et -1 . Elle est donc dérivable sur $-\infty ;-1[\cup]-1 ; 1[\cup] 1 ;+\infty[$. Comme la fonction exponentielle est dérivable sur \mathbb{R}, f est dérivable sur $\mid-\infty ;-1[U]-1 ; 1[\cup] 1 ;+\infty[$. Pour tout réel x différent de 1 et de -1 , on a :

$$
u^{\prime}(x)=\frac{1\left(x^{2}-1\right)-x \times 2 x}{\left(x^{2}-1\right)^{2}}=-\frac{x^{2}+1}{\left(x^{2}-1\right)^{2}}
$$

Donc $f^{\prime}(x)=u^{\prime}(x) e^{u(x)}$ soit $f^{\prime}(x)=-\frac{x^{2}+1}{\left(x^{2}-1\right)^{2}} e^{\frac{x}{x^{2}-1}}$.

Exercice 63.

Solution

Pour tout réel x, on pose $u(x)=\frac{2 x^{2}+3}{x^{2}+1}$: et $v(x)=x$ donc $f(x)=v(x) e^{u(x)}$. La fonction rationnelle u. est définie sur \mathbb{R}, donc est dérivable sur \mathbb{R}. Pour tout réel $x, u^{\prime}(x)=\frac{-2 x}{\left(x^{2}+1\right)^{2}}$.
Les fonctions $x \mapsto e^{x}, u$ et v étant dérivables sur \mathbb{R}, la fonction f est dérivable sur \mathbb{R}. Pour tout réel x, on a :

$$
f^{\prime}(x)=v^{\prime}(x) e^{u(x)}+v(x) u^{\prime}(x) e^{u(x)} .
$$

$$
\begin{aligned}
& f^{\prime}(x)=e^{\frac{2 x^{2}+3}{x^{2}+1}}+x \times \frac{-2 x}{\left(x^{2}+1\right)^{2}} \times e^{\frac{2 x^{3}+3}{x^{2}+1}}=e^{\frac{2 x+3}{x^{2}+1}}\left[1+\frac{-2 x^{2}}{\left(x^{2}+1\right)^{2}}\right] . \\
& f^{\prime}(x)=e^{\frac{2 x+3}{x^{2}+1}}\left[\frac{\left(x^{2}+1\right)^{2}-2 x^{2}}{\left(x^{2}+1\right)^{2}}\right], f^{\prime}(x)=e^{\frac{2 x+3}{x^{2}+1}}\left[\frac{x^{4}+1}{\left(x^{2}+1\right)^{2}}\right] .
\end{aligned}
$$

Exponentielle et fonction trigonométrique

Exercice 64.

Solution

1. Pour tout réel x, on pose $u(x)=\sin (x)$.

Les fonctions u et exponentielle sont dérivables sur \mathbb{R}, f est la composée de ces deux fonctions; f^{\prime} est donc dérivable sur \mathbb{R}.
$u^{\prime}(x)=\cos (x)$ donc $f^{\prime}(x)=u^{\prime}(x) e^{u(x)}=\cos (x) e^{\sin (x)}$.
2. Pour tout réel x, on pose $u(x)=\cos (x)$

Les fonctions u et exponentielle sont dérivables sur \mathbb{R}, f est la composée de ces deux fonctions, f est donc dérivable sur \mathbb{R}.
$u^{\prime}(x)=-\sin (x)$ donc $f^{\prime}(x)=u^{\prime}(x) e^{u(x)}=--\sin (x) e^{\cos (x)}$.
3. Pour tout réel x de $\left|-\frac{\pi}{2} ; \frac{\pi}{2}\right|$ on pose $u(x)=\tan (x)$

La fonction u est dérivable sur $\int-\frac{\pi}{2} ; \frac{\pi}{2}[$ et la fonction exponentielle est dérivable sur \mathbb{R} donc f est dérivable sur $]-\frac{\pi}{2} ; \frac{\pi}{2}[$. $u^{\prime}(x)=1+\tan ^{2}(x)$ donc $f^{\prime}(x)=u^{\prime}(x) e^{u(x)}$.

$$
f^{\prime}(x)=\left(1+\tan ^{2}(x)\right) e^{\tan (x)}
$$

Exercice 65.
Determiner la fonction derivee de la fonction f definie par $f(x)=\sin (x) e^{\cos (t)}$ pour $x \in \mathbb{R}$

Solution

Les fonction sin et cos. sont dérivables sur \mathbb{R}, donc f est dérivable sur \mathbb{R}. Pour tout réel x, on a :

$$
f^{\prime}(x)=\cos (x) \times e^{\cos (x)}-\sin ^{2}(x) \times e^{\cos (x)}=e^{\cos (x)}\left(\cos (x)-\sin ^{2}(x)\right) .
$$

$$
f^{\prime}(x)=\left(\cos ^{2}(x)+\cos (x)-1\right) e^{\cos (x)} .
$$

Exercice 66.

Solution

Pour tout réel x, on pose $u(x)=e^{\cos (x)}$, la fonction u est dérivable sur \mathbb{R} et $u^{\prime}(x)=-\sin (x) \times e^{\cos (x)}$. On a : $f(x)=\sin (u(x))$.
Les fonctions. u et sinus sont dérivables sur \mathbb{R}, f est la composée de ces deux fonctions, f est donc dérivable sur \mathbb{R}. Pour tout réel x, on a : $f^{\prime}(x)=u^{\prime}(x) \times \cos (u(x))=-\sin (x) \times e^{\cos (x)} \times \cos \left(e^{\cos (x)}\right)$.

Exercice 6%.

Solution

Sur $\left[0 ; \frac{\pi}{2}\right], f$ est un quotient de fonctions dérivables sur $\left.\int 0 ; \frac{\pi}{2}\right]$ dénominateur ne s'annulant pas), donc f est dérivable sur $\left\lfloor 0 ; \frac{\pi}{2}\right]$. Pour tout x appartenant à $\left[0 ; \frac{\pi}{2}\right]$, on pose $u(x)=e^{2 x}-e^{x}$ et $v(x)=\sin (x)$ donc $f(x)=\frac{u(x)}{v(x)}$.
$f^{\prime}(x)=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{v^{2}(x)}, u^{\prime}(x)=2 e^{2 x}-e^{x}$ et $v^{\prime}(x)=\cos (x)$.

$$
f^{\prime}(x)=\frac{\left(2 e^{2 x}-e^{x}\right) \sin (x)-\left(e^{2 x}-e^{x}\right) \cos (x)}{\sin ^{2}(x)} .
$$

\checkmark Exponentielle et racine carrée

Exercice 68.

Pour tout x appartenant à $\mathbb{R}_{+}^{*}, f(x)=\left(e^{-\frac{1}{x}}\right)^{\frac{1}{2}}=e^{-\frac{1}{2 x}}$ donc f est bien dérivable sur \mathbb{R}_{+}^{*}. Pour tout x de \mathbb{R}_{+}^{*}, on pose $u(x)=\frac{-1}{2 x}$ donc
$f(x)=e^{u(x)} \cdot f^{\prime}(x)=u^{\prime}(x) \times e^{u(x)}=\frac{1}{2 x^{2}} e^{-\frac{1}{2 x}}=\frac{1}{2 x^{2}}\left(e^{-\frac{1}{x}}\right)^{\frac{1}{2}}=\frac{1}{2 x^{2}} \sqrt{e^{-\frac{1}{x}}}$.
Dérivabilité en 0 .
Pour tout $x \in \mathbb{R}_{+}^{*}$, on a $\frac{f(x)-f(0)}{x}=\frac{f(x)}{x}=\frac{e^{-\frac{1}{2 x}}}{x}=-2\left(\frac{-1}{2 x}\right) \times e^{-\frac{1}{2 x}}$.
$\lim _{x \rightarrow 0^{+}} \frac{-1}{2 x}=-\infty$ et $\lim _{x \rightarrow-\infty} X e^{x}=0$. D'après le théorème sur la limite de la composée de deux fonctions, on a $\lim _{x \rightarrow 0^{+}} \frac{-1}{2 x} \times e^{-\frac{1}{2 x}}=0$.
$\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}=0^{\prime}$ donc la fonction f est dérivable en 0 et

$$
f^{\prime}(0)=0 \text {. }
$$

Exercice 69.

Solution

Pour tout $x \in \mathbb{R}_{+}^{*}$, on pose $u(x)=e^{\sqrt{x}}$ et $v(x)=\sqrt{x}$. Les fonctions u et v sont dérivables sur \mathbb{R}_{+}^{*} et on a $u^{\prime}(x)=\frac{e^{\sqrt{x}}}{2 \sqrt{x}}$ et $v^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. $f^{\prime}(x)=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{(v(x))^{2}}=\frac{\frac{e^{\sqrt{x}}}{2}-\frac{e^{\sqrt{x}}}{2 \sqrt{x}}}{x}=\frac{\sqrt{x}-1}{2 x \sqrt{x}} e^{\sqrt{x}}$.

Exercice 70.
Déterminer la fonction derivee de la fonction f definie par $f(x)=x^{2} e^{\sqrt{5}}$ pour $x \in \mathbb{R}^{*}$: Étudier la derivabilite de f en 0

Solution

La fonction f est dérivable sur \mathbb{R}_{+}^{*}. On pose $u(x)=x^{2}$ et $v(x)=\sqrt{x}$ donc $f(x)=u(x) \times e^{v(x)} . f^{\prime}(x)=u^{\prime}(x) \times e^{v(x)}+u(x) \times v^{\prime}(x) \times e^{v(x)}$.
$f^{\prime}(x)=2 x e^{\sqrt{x}}+\frac{x^{2} e^{\sqrt{x}}}{2 \sqrt{x}}=2 x e^{\sqrt{x}}+\frac{x \sqrt{x} e^{\sqrt{x}}}{2}=\frac{x(\sqrt{x}+4) e^{\sqrt{x}}}{2}$.
Dérivabilité en 0 .
Pour tout $x>0, \frac{f(x)-f(0)}{x}=\frac{f(x)}{x}=\frac{x^{2} e^{\sqrt{x}}}{x}=x e^{\sqrt{x}}$.
$\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$ et $\lim _{x \rightarrow 0} e^{x}=1$ donc $\lim _{x \rightarrow 0^{+}} e^{\sqrt{x}}=1$.
Donc $\lim _{x \rightarrow 0^{+}} x e^{\sqrt{x}}=0$ et f est dérivable en 0 et $f^{\prime}(0)=1$.

\checkmark Exponentielle et fonction logarithme

Exercice 71.

Deterimer la fonction dorive de ta fonction f adific par $f(x)=\ln \left(e^{t}-1\right)$ pour

Solution

Pour tout $x \in \mathbb{R}_{+}^{*}$, on pose $u(x)=e^{x}-1$ et $v(x)=\ln (x)$.
On a $f=v \circ u$. Pour tout $x \in \mathbb{R}_{+}^{*}$,
$f^{\prime}(x)=u^{\prime}(x) \times v^{\prime}[u(x)]=e^{x} \times \frac{1}{e^{x}-1}=\frac{e^{x}}{e^{x}-1}$.
Exercice 72.

Solution

La fonction $x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}_{+}^{*}. La fonction exponentielle est dérivable sur \mathbb{R}, donc la fonction $x \mapsto e^{\frac{1}{x}}$. est dérivable sur \mathbb{R}_{+}^{*}.
La fonction logarithme est dérivable sur \mathbb{R}_{+}^{*}. Le produit de deux
fonctions dérivables sur \mathbb{R}_{+}^{*} est dérivable sur \mathbb{R}_{+}^{*} donc f est dérivable sur \mathbb{R}_{+}^{*}. Pour tout $x \in \mathbb{R}_{+}^{*}$, on a :

$$
f^{\prime}(x)=-\frac{1}{x^{2}} e^{\frac{1}{x}} \ln (x)+\frac{1}{x} e^{\frac{1}{x}}=\frac{e^{\frac{1}{x}}}{x}\left(1-\frac{\ln (x)}{x}\right) .
$$

Dérivées successives

Exercice 73.*

Soit f Ia fonction definie sur. R par $f(r)=e^{*} \cos (\omega)$

1:. Dimontret yue cos dit) san int $\sqrt{2}$ cos $\left(\alpha, \frac{\pi}{4}\right)$
2. Wiontren que. pour folit of appartemuit at Pa
$f^{\prime}(\infty)=A e$ cos $(x+c)$ sul 4 et a sont deux conetantes déterniiner:

3:. Determiner la derivie dordre $1 t$ (entier naturel non: inu) de la fonction

Solution

1. $\quad \cos (a)-\sin (a)=\sqrt{2}\left(\frac{\sqrt{2}}{2} \cos (a)-\frac{\sqrt{2}}{2} \sin (a)\right)$.

$$
\begin{aligned}
& \cos (a)-\sin (a)= \sqrt{2}\left(\cos \left(\frac{\pi}{4}\right) \cos (a)-\sin \left(\frac{\pi}{4}\right) \sin (a)\right) . \\
& \cos (a)-\sin (a)=\sqrt{2} \cos \left(a+\frac{\pi}{4}\right) .
\end{aligned}
$$

2. Pour tout réel $x, f^{\prime}(x)=e^{x} \cos (x)-e^{x} \sin (x)$.
$f^{\prime}(x)=e^{x}(\cos (x)-\sin (x))=\sqrt{2} e^{x} \cos \left(x+\frac{\pi}{4}\right) . \alpha=\sqrt{2}$ et $\alpha=\frac{\pi}{4}$.
3. Pour tout $n \in \mathbb{N}^{*}$, on pose P_{n} :

$$
<. \forall x \in \mathbb{R}, f^{(n)}(x)=(\sqrt{2})^{n} e^{x} \cos \left(x+n \frac{\pi}{4}\right) \gg .
$$

D'après la question 1, $f^{(1)}(x)=(\sqrt{2})^{1} e^{x} \cos \left(x+\frac{\pi}{4}\right)$ donc P_{1} est vraie.
Soit n appartenant à \mathbb{N}^{*}. Supposons que P_{n} soit vraie.
Pour tout réel $x, f^{(n)}(x)=(\sqrt{2})^{n} e^{x} \cos \left(x+n \frac{\pi}{4}\right)$. En dérivant on
obtient $f^{(n+1)}(x)=(\sqrt{2})^{n}\left[e^{x} \cos \left(x+n \frac{\pi}{4}\right)-e^{x} \sin \left(x+n \frac{\pi}{4}\right)\right]$.
$f^{(n+1)}(x)=(\sqrt{2})^{n} e^{x}\left[\cos \left(x+n \frac{\pi}{4}\right)-\sin \left(x+n \frac{\pi}{4}\right)\right]$. En utilisant la question
2, on a: $f^{(n+1)}(x)=(\sqrt{2})^{n} e^{x} \sqrt{2} \cos \left(x+n \frac{\pi}{4}+\frac{\pi}{4}\right)$.
$f^{(n+1)}(x)=(\sqrt{2})^{n+1} e^{x} \cos \left(x+(n+1) \frac{\pi}{4}\right)$ donc P_{n+1} est vraie.
Conclusion : la proposition P_{n} est vraie au rang 1 . et. est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}^{*}$ et donc, pour tout réel x, on a :

$$
f^{(n)}(x)=(\sqrt{2})^{n} e^{x} \cos \left(x+n \frac{\pi}{4}\right) \text {. }
$$

V. Positions relatives d'ume droite et de la courbe représentative de la fonction exponentielle

\checkmark Par rapport à une tangenté

Exercice 74 .
Soit (T) la tangente A la surbe represertative de the fonetion exponetuible au point i'alisisse 0

1. Déterminer mae favation de la dronte (T)
 graplique de la fraction exionemitile.

Solution

I. La fonction exponentielle est dérivable en 0 , donc sa représentation graphique admet une tangente au point d'abscisse 0 . On a $\exp ^{\prime}(0)=\exp (0)=1$ donc (T) a pour équation $y=x+1$.
2. Pour tout réel x, on pose $f(x)=e^{x}-x-1$.
$f^{\prime}(x)=e^{x}-1$. Si $x<0$ alors $e^{x}<1$ donc $f^{\prime}(x)<0$ et si $x>0$ alors $e^{x}>1$ donc $f^{\prime}(x)>0 . f^{\prime}(0)=1$.
f est strictement décroissante sur $\left.\int-\infty, 0\right]$ et strictement croissante sur $[0,+\infty[$. La fonction f admet donc un minimum global en 0 .

Comme $f(0)=0$, pour tout réel $x, f(x) \geq 0 .(T)$ est en dessous de la représentation. graphique de la fonction exponertielle.

Exercice 75.

Solution

Soit $a \in \mathbb{R}$. Une équation de la tangente $\left(T_{a}\right)$ au point d'abscisse a est $y-e^{a}=e^{a}(x-a)$ c'est-à-dire $y=x e^{a}+e^{a}-a e^{a}$.
On pose $\varphi(x)=e^{x}-x e^{a}-e^{a}+a e^{a}$ pour tout $x \in \mathbb{R}$. φ est dérivable sur \mathbb{R} et on a $\varphi^{\prime}(x)=e^{x}-e^{a}$.
φ est strictement décroissante sur $]-\infty ; a]$ et φ est strictement croissante sur $[a ;+\infty[. \varphi$ admet donc un minimum global en a.
Comme $\varphi(a)=0$ on a, pour tout $x \neq a, \varphi(x)>0$.
Finalement, la représentation graphique de la fonction exponentielle est au dessus de toutes ses tangentes.
Remarque: on dit que la fonction exponentielle est une fonction convexe.

Représentation graphique de la fonction exponentielle ainsi que deux des tangentes à la courbe.

Par rapport à une droite
Exercice 76:

1. Etadier la fonction t et diesser le tableau de variatiou de f

(D) conpe la contbe reprentative de la fonction exponentielle on deux points:
2. Dindier la poition retative de la droite (M) et de la courle eppéerniative de la lonction exponentielle

Solution

1. f est dérivable sur \mathbb{R} et, pour tout réel x, on a :
$f^{\prime}(x)=e^{x}-3$ et $\left(f^{\prime}(x)=0\right) \Leftrightarrow\left(e^{x}-3=0\right) \Leftrightarrow\left(e^{x}=3\right) \Leftrightarrow(x=\ln (3))$.
$\left(f^{\prime}(x)>0\right) \Leftrightarrow\left(e^{x}-3>0\right) \Leftrightarrow\left(e^{x}>3\right) \Leftrightarrow(x>\ln (3))$.
La fonction f est strictement décroissante sur $\mid-\infty ; \ln (3)]$.
La fonction f est strictement croissante sur $[\ln (3) ;+\infty[$.
La fonction f admet donc un minimum global en $x=\ln (3)$ et $f(\ln (3))=3-3 \ln (3)-2=1-3 \ln (3)<0$.
Limite en $-\infty$:
$\lim _{x \rightarrow-\infty}\left(e^{x}\right)=0$ et $\lim _{x \rightarrow-\infty}(-3 x-2)=+\infty$ donc $\lim _{x \rightarrow-\infty} f(x)=+\infty$.
Limite en $+\infty$: pour x non nul, on a : $f(x)=x\left(\frac{e^{x}}{x}-3-\frac{2}{x}\right)$.
$\lim _{x \rightarrow+\infty} \frac{e^{x}}{x}=+\infty$ (cours) donc $\lim _{x \rightarrow+\infty}\left(\frac{e^{x}}{x}-3-\frac{2}{x}\right)=+\infty$.
$\lim _{x \rightarrow+\infty} f(x)=+\infty$.

x	$-\infty$	$\ln (3)$	$+\infty$	
$f^{\prime}(x)$		-	0	+
	$+\infty$			
f				
		$1-3 \ln (3)$		

2. Soit (D) la droite d'équation $y=3 x+2$. Montrer que la droite (D) coupe la courbe représentative de la fonction exponentielle en deux points revient à résoudre l'équation $f(x)=0$.
La fonction f est continue et strictement décroissante sur $1-\infty ; \ln (3)]$, donc f induit une bijection de $]-\infty ; \ln (3)]$ sur $[1-3 \ln (3) ;+\infty[$. $0 \in[1-3 \ln (3) ;+\infty[$ donc l'équation $f(x)=0$ admet, sur $]-\infty ; \ln (3)]$, une unique solution. La droite (D) coupe la courbe représentative de la fonction exponentielle en un point sur $]-\infty ; \ln (3)]$. La fonction f est continue et strictement croissante sur $[\ln (3) ;+\infty[$; donc f induit une bijection de $[\ln (3) ;+\infty[$ sur $[1-3 \ln (3) ;+\infty[$. $0 \in[1-3 \ln (3) ;+\infty[$ donc l'équation $f(x)=0$ admet, sur $[\ln (3) ;+\infty[$, une solution. La droite (D) coupe la courbe représentative de la fonction exponentielle en un point $\operatorname{sur}[\ln (3) ;+\infty[$.
La droite (D) coupe donc la courbe représentative de la fonction exponentielle en deux points, l'un a son abscisse α dans $]-\infty ; \ln (3)]$, l'autre a son abscisse β dans $[\ln (3) ;+\infty[$.
3. Pour déterminer la position relative de (D) et la courbe représentative de la fonction exponentielle, il suffit d'étudier le signe de $f(x)$. En utilisant le sens de variation de f et ce qui vient d'être dit, on peut écrire :

x	$-\infty$		α		β		$+\infty$
$f(x)$		+	0	-	0	+	

Donc la représentation graphique de la fonction exponentielle est audessus de la droite (D) sur $]-\infty ; \alpha[$ et sur $] \beta ;+\infty[$, en dessous de la droite (D) sur $\mid \alpha ; \beta[$. Les points d'intersection sont les points $A(\beta, 3 \beta+2)$ et $B(\alpha, 3 \alpha+2)$.

Position relative des deux courbesi
\checkmark Par rapport à une asymptote

Exercice 7\%.

1. Montret qie C. dimet If droife (D) dequation

comme asyuptore ofligue

2. Ftadier la posinion rela ive rate C et (1)

Solution

1. Pour tout réel x, on pose $\varphi(x)=e^{-3 x}$. donc $f(x)=x+1+\varphi(x)$. $\lim _{x \rightarrow-\infty}-3 x=+\infty$ et $\lim _{x \rightarrow+\infty} e^{x}=+\infty$ d'après le theorème sur la limite de la composée de deux fonctions, on a $\lim _{x \rightarrow-\infty} e^{-3 x}=+\infty$ 事 Ainsi la droite (D) n'est pas une asymptote à C_{f} au voisinage de $-\infty$. $\lim _{x \rightarrow+\infty}-3 x=-\infty$ et $\lim _{x \rightarrow-\infty} e^{x}=0$ donc $\lim _{x \rightarrow+\infty} e^{-3 x}=0$. Ainsi, $f(x)=x+1+\varphi(x)$ avec $\lim _{x \rightarrow+\infty} \varphi(x)=0$. . 青 $)=$ La droite (D) est une asymptote à C_{f} au voisinage defof ∞.
2. Position relative de C_{f} et (D).

Pour cela, il suffit d'étudier le signe de la différence $f(x)-x-1$.
Cette différence est strictement positive sur \mathbb{R}, donc C_{f} est au dessus de (D) sur \mathbb{R}.

Exercice 78.

Solution

1. Limite en $+\infty$. $f(x)=\frac{(x+1) e^{x}}{e^{x}}+\frac{5}{e^{x}}=x+1+\frac{5}{e^{x}}$.
comme $\lim _{x \rightarrow+\infty} \frac{5}{e^{x}}=0$ et $\lim _{x \rightarrow+\infty}(x+1)=+\infty$, on a $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
Limite en $-\infty \cdot \bar{f}(x)=\left(x e^{x}+e^{x}+5\right) \times \frac{1}{e^{x}}$.
On sait que $\lim _{x \rightarrow-\infty} e^{x}=0$ et $\lim _{x \rightarrow-\infty} x e^{x}=0$ donc $\lim _{x \rightarrow-\infty}\left(x e^{x}+e^{x}+5\right)=5$.
comme $\lim _{x \rightarrow-\infty} \frac{1}{e^{x}}=+\infty$ on a $\lim _{x \rightarrow-\infty} f(x)=+\infty$.
2. On pose $\varphi(x)=\frac{5}{e^{x}}$. On a $f(x)=x+1+\varphi(x)$ avec $\lim _{x \rightarrow+\infty} \varphi(x)=0$ donc la droite (D) d'équation $y=x+1$ est une asymptote oblique à C_{f} au voisinage de $+\infty$.
3. Il suffit d'étudier sur \mathbb{R} le signe de $f(x)-(x+1)$. Pour tout réel x, on a : $f(x)-(x+1)=\varphi(x)=\frac{5}{e^{x}}$. Il est clair que cette différence est strictement positive sur \mathbb{R}, donc C_{f} est au dessus de (D) sur \mathbb{R}.

Exercice 79.

3. Montret gue C, admet wie atymptote oblique (Df) an voisinuse ce O
4. Ptucier la porition relaliue de:rs, ef (D)

Solution

1. Limiťe en $-\infty$. $\lim _{x \rightarrow-\infty} e^{x}=0$ et $\lim _{X \rightarrow 0} \frac{3 X}{X+7}=0$ donc $\lim _{x \rightarrow-\infty} \frac{3 e^{x}}{e^{x}+7}=0$.

D'autre part $\lim _{x \rightarrow-\infty}(5 x-1)=-\infty$ donc $\lim _{x \rightarrow-\infty} f(x)=-\infty$.
Limite en $+\infty . \lim _{x \rightarrow+\infty} e^{x}=+\infty$. et $\lim _{x \rightarrow+\infty} \frac{3 X}{X+7}=3$. donc $\lim _{x \rightarrow+\infty} \frac{3 e^{x}}{e^{x}+7}=3 . \quad$ D'autre part $\lim _{x \rightarrow+\infty}(5 x-1)=+\infty \quad$ donc $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
2. Pour tout réel x, on pose $\varphi_{1}(x)=\frac{3 e^{x}}{e^{x}+7}$. On a $f(x)=5 x-1+\varphi_{1}(x)$ avec d'après $1, \lim _{x \rightarrow-\infty} \varphi_{1}(x)=0$. Donc la droite (D) d'équation $y^{\circ}=5 x-1$ est une asymptote oblique à C_{f} au voisinage de $-\infty$.
3. Pour tout réel $x, f(x)=5 x-1+\frac{3 e^{x}}{e^{x}+7}=5 x+\frac{-\left(e^{x}+7\right)+3 e^{x}}{e^{x}+7}$. $f(x)=5 x+\frac{2 e^{x}-7}{e^{x}-7}=5 x+\frac{2\left(e^{x}+7\right)-21}{e^{x}+7}=5 x+2+\frac{-21}{e^{x}+7}$.
On pose $\varphi_{2}(x)=\frac{-21}{e^{x}+7}$. Il est clair que $\lim _{x \rightarrow+\infty} \frac{-21}{e^{x}+7}=0$ donc $f(x)=5 x+2+\varphi_{2}(x)$ avec $\lim _{x \rightarrow+\infty} \varphi_{2}(x)=0$. La droite $\left(D^{\prime}\right)$ d'équation $y=5 x+2$ est une asymptote oblique à C_{f} au voisinage de $+\infty$.
4. Position relative de C_{f} et (D).

La position relative de C_{f} et (D) revient à étudier sur \mathbb{R} le signe de la différence $f(x)-(5 x-1)=\frac{3 e^{x}}{e^{x}+7}=\varphi_{1}(x)$. Comme $\varphi_{1}(x)>0, C_{f}$ est au dessus de (D) sur \mathbb{R}.
5. Déterminer la position relative de C_{f} et $\left(D^{\prime}\right)$ revient à étudier sur \mathbb{R} le signe de la différence $f(x)-(5 x+2)=\frac{-21}{e^{x}+7}=\varphi_{2}(x)$. Comme $\varphi_{2}(x)<0, C_{f}$ est en dessous de (D) sur \mathbb{R}.

Exercice 80.

Solution

1. Limite en $+\infty$. Pour tout réel x non nul, on a
$f(x)=x\left(e^{x}-2+\frac{3}{x}\right)$ donc $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
Limite en $-\infty$: On a $\lim _{x \rightarrow-\infty} x e^{x}=0$ (cours) et $\lim _{x \rightarrow-\infty}(-2 x+3)=+\infty$ donc $\lim _{x \rightarrow-\infty} f(x)=+\infty$.
2. Pour tout réel x, on pose $\varphi(x)=x e^{x}$.

On a : $f(x)=-2 x+3+\varphi(x)$ avec $\lim _{x \rightarrow-\infty} \varphi(x)=0$, donc la droite (D) d'équation $y=-2 x+3$ est une asymptote oblique à C_{f} au voisinage de $-\infty$.

Remarque: supposons que C_{f} admette une asymptote oblique d'équation $y=a x+b$ au voisinage de $+\infty$. Le coefficient directeur a de l'asymptote est donné par la limite : $\lim _{x \rightarrow+\infty} \frac{f(x)}{x}$. En effet $f(x)=a x+b+\varphi(x)$ avec $\lim _{x \rightarrow+\infty} \varphi(x)=0$ donc $\frac{f(x)}{x}=a+\frac{b}{x}+\frac{\varphi(x)}{x}$ et, en passant à la limite, on obtient $\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=a$. Or ici $\frac{f(x)}{x}=e^{x}-2+\frac{3}{x}$ donc $\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=+\infty$.
Finalement C_{f} n'admet pas d'asymptote oblique en $+\infty$. (On dit que
C_{f} admet une branche parabolique de direction l'axe des ordonnées).
3. Déterminer la position relative de C_{f} et (D) revient à étudier sur \mathbb{R} le signe de la différence $f(x)-(-2 x+3)=x e^{x}=\varphi(x)$. Le signe de $\varphi(x)$ est celui de x donc:

- Sur $]-\infty ; 0\left[, C_{f}\right.$ est en dessous de (D).
- Sur $] 0 ;+\infty\left[, C_{f}\right.$ est au dessus de (D).
- $\quad C_{f}$ et (D) se coupent au point d'abscisse 0 et d'ordonnée 3.

VI. Suites et exponentielles

Exercice 81.

3. Fir dedime que si $r \geqslant 1$ alor. $0 . t$. u
4. Di conclure que lim

Solution

1. D'après l'exercice 74 , pour tout réel $x, 1+x \leq e^{x}$.

En posant $x=\frac{1}{n}$, on a : si $n \geq 1$ alors $1+\frac{1}{n} \leq e^{\frac{1}{n}}$ donc, la fonction $x \mapsto x^{n}\left(n \in \mathbb{N}^{*}\right)$ étant croissante sur $\left[0 ;+\infty\left[,\left(1+\frac{1}{n}\right)^{n} \leq e\right.\right.$.
2. ${ }^{-}$On pose $X=-x$.

Si $X<1$ alors $0<1-X<e^{-X}$ donc $e^{X} \leq \frac{1}{1-X}$.
$X=\frac{1}{n+1} \quad$ donne $\quad \frac{1}{1-X}=\frac{1}{1-\frac{1}{n+1}}=\frac{1}{\frac{n}{n+1}}=\frac{n+1}{n}=1+\frac{1}{n} \quad$ et
$e^{x}=e^{\frac{1}{n+1}}$. En utilisant la question précédente, on obtient : $e^{\frac{1}{n+1}} \leq 1+\frac{1}{n}$ soit $e \leq\left(1+\frac{1}{n}\right)^{n+1}$.
3. D'après les questions. 1 et 2 , pour tout $n \geq 1$, $\left(1+\frac{1}{n}\right)^{n} \leq e \leq\left(1+\frac{1}{n}\right)^{n+1}$ donc $0 \leq e-\left(1+\frac{1}{n}\right)^{n} \leq\left(1+\frac{1}{n}\right)^{n+1}-\left(1+\frac{1}{n}\right)^{n}$. $\left(1+\frac{1}{n}\right)^{n+1}-\left(1+\frac{1}{n}\right)^{n}=\left(1+\frac{1}{n}\right)^{n} \times \frac{1}{n}$. $0 \leq e-u_{n}{ }^{n} \leq\left(1+\frac{1}{n}\right)^{n} \times \frac{1}{n} \leq \frac{e}{n} \leq \frac{3}{n}$.
Si $n \geq 1$ alors $0 \leq e-u_{n} \leq \frac{3}{n}$.
4. On a : $\lim _{n \rightarrow+\infty} \frac{3}{n}=0$ donc $\lim _{n \rightarrow+\infty}\left(e-u_{n}\right)=0$ et $\lim _{n \rightarrow+\infty} u_{n}=e$.

Exercice 82.

La suite de terme général e^{-n} est une suite géométrique de raison
$e^{-1}=\frac{1}{e}$. On a donc $: S_{n}=\frac{1-e^{-(n+1)}}{1-e^{-1}}$.
Comme $2<e<3$ on a $0<e^{-1}<1$ donc $\lim _{n \rightarrow+\infty} e^{-n}=0$.
$e^{-(n+1)}=e^{-1} \times e^{-n}$ d'où $\lim _{n \rightarrow+\infty} e^{-(n+1)}=0$ et $\lim _{n \rightarrow+\infty} S_{n}=\frac{1}{1-e^{-1}}=\frac{e}{e-1}$.

$$
\lim _{n \rightarrow+\infty} S_{n}=\frac{e}{e-1}
$$

VII. Primitives et exponentielle

Exercice 83.

Trouver une primitive de f definie sur \mathbb{R} par $f(x)=2 x e^{x^{2}+5}+2$.

Solution

La fonction f est continue sur \mathbb{R}, elle admet donc des primitives sur
\mathbb{R}. On pose $u(x)=x^{2}+5$ donc $u^{\prime}(x)=2 x$ et $f(x)=u^{\prime}(x) e^{u(x)}+2$.
La fonction F définie pour tout réel x par $F(x)=e^{x^{2}+5}+2 x$ est une primitive de la fonction f sur \mathbb{R}.

Exercice 84.
Trouver une primitive de f definie sur $f: i+\infty\left[\right.$ par $\left.f(x)=\frac{1}{x^{2}} e^{1}\right]$

Solution

La fonction f est continue sur $] 0 ;+\infty[$, elle admet donc des primitives sur $] 0 ;+\infty[$. Pour tout $x \in] 0 ;+\infty\left[\right.$ on pose $u(x)=\frac{1}{x}+1$ donc $u^{\prime}(x)=-\frac{1}{x^{2}} \quad$ et $\quad f(x)=-u^{\prime}(x) e^{u(x)}$. La foriction F définie par $F(x)=-e^{\frac{1}{x}+1}$ est une primitive de la fonction f sur $] 0 ;+\infty$.

Exercice 85.

Irouyr ume primitive de la fongetion (definie sir Re. ivat

Solution

La fonction f est continue sur \mathbb{R}, elle admet donc des primitives sur $\mathbb{R}:$ On a : $f(x)=\frac{e^{7 x}}{e^{x}}+\frac{5 e^{x}}{e^{x}}+\frac{1}{e^{x}}=e^{6 x}+5+e^{-x}$.
Une primitive sur \mathbb{R} de la fonction $x \mapsto e^{6 x}$ est la fonction $x \mapsto \frac{1}{6} e^{6 x}$.
Une primitive sur \mathbb{R} de la fonction $x \mapsto e^{-x}$ est la fonction $x \mapsto-e^{-x}$.
Donc la fonction F définie par $F(x)=\frac{1}{6} e^{6 x}-e^{-x}+5 x$ est une primitive de la fonction f sur \mathbb{R}.

Ewercice 86.

Solution

La fonction f est continue sur \mathbb{R}, elle admet donc des primitives sur
\mathbb{R}. On a: $f(x)=\frac{e^{3 x-1}}{e^{3 x}}-\frac{e^{x-1}}{e^{3 x}}+\frac{5}{e^{3 x}}=e^{-1}-e^{-2 x-1}+5 e^{-3 x}$.
Une primitive sur \mathbb{R} de la fonction $x \mapsto e^{-2 x-1}$ est la fonction

$$
x \mapsto-\frac{1}{2} e^{-2 x-1} .
$$

Une primitive sur \mathbb{R} de la fonction $x \mapsto 5 e^{-3 x}$. est la fonction

$$
x \mapsto-\frac{5}{3} e^{-3 x}
$$

Une primitive sur \mathbb{R} de la fonction $x \mapsto \dot{e}^{-1}$ est la fonction

$$
x \mapsto e^{-1} \times x=\frac{x}{e} .
$$

Donc la fonction F définie par $F(x)=\frac{1}{2} e^{-2 x-1}-\frac{5}{3} e^{-3 x}+\frac{x}{e}$ est une primitive de la fonction f sur \mathbb{R}.

Exercice 8%

Solution

La fonction f est continue sur \mathbb{R}, elle admet donc des primitives sur \mathbb{R}. Pour tout réel x, on pose $u(x)=e^{x}+5$. On a $u(x)>0$ et $u^{\prime}(x)=e^{x}$. Comme $f(x)=\frac{u^{\prime}(x)}{u(x)}$, la fonction F définie par $F(x)=\ln \left(e^{x}+5\right)$ est une primitive de la fonction f sur \mathbb{R}.

Exercice 88.

Solution

- $\quad f$ est continue sur \mathbb{R} donc f admet des primitives sur \mathbb{R}.

On pose $u(x)=3-x$. On a $u^{\prime}(x)=-1$ et $f(x)=-u^{\prime}(x) e^{u(x)}$ donc une primitive de la fonction f sur \mathbb{R} est la fonction F définie par :

$$
F(x)=-e^{u(x)}=-e^{3-x}
$$

- $f(x)=\sqrt{e^{x}}=\left(e^{x}\right)^{\frac{1}{2}}=e^{\frac{x}{2}}$. f est continue sur \mathbb{R}, donc f admet
des primitives sur \mathbb{R}. On pose $u(x)=\frac{x}{2}$. On a $u^{\prime}(x)=\frac{1}{2}$ et $f(x)=2 u^{\prime}(x) e^{u(x)}$ donc une primitive de la fonction f sur \mathbb{R} est la fonction F définie par $F(x)=2 e^{u(x)}=2 e^{\frac{x}{2}}$ soit

$$
F(x)=2 \sqrt{e^{x}} \text {. }
$$

Exercice 89.

Solution

- $\quad f$ est continue sur \mathbb{R}, donc f admet des primitives sur \mathbb{R}.

On pose $u(x)=x^{5}-2 x+7$. On a $u^{\prime}(x)=5 x^{4}-2$ et $f(x)=u^{\prime}(x) e^{u(x)}$. Une primitive de la fonction f sur \mathbb{R} est la fonction F définie par:

$$
F(x)=e^{x^{5}-2 x+7} \text {. }
$$

- $\quad f$ est continue sur \mathbb{R}, donc f admet des primitives sur \mathbb{R}.

On pose $u(x)=2 x^{3}+4$. On a $u^{\prime}(x)=6 x^{2}$ et $f(x)=\frac{5}{6} u^{\prime}(x) e^{u(x)}$ donc une primitive de la fonction f sur \mathbb{R} est la fonction F définie par :

$$
F(x)=\frac{5}{6} e^{2 x^{3}+4} .
$$

- $\quad f$ est continue sur \mathbb{R}, donc f admet des primitives sur \mathbb{R}. On pose $u(x)=7 e^{x}+3$. On a, pour tout réel $x, u(x)>0$ et $u^{\prime}(x)=7 e^{x}$. Or $f(x)=\frac{5}{7} \times \frac{u^{\prime}(x)}{u(x)}$ donc une primitive de la fonction f $\operatorname{sur} \mathbb{R}$ est la fonction F définie par:

$$
F(x)=\frac{5}{7} \ln \left(7 e^{x}+3\right) .
$$

Exercice 90.*

Solution

f est continue sur \mathbb{R}; donc f admet des primitives sur \mathbb{R}. On a $f(x)=\frac{1}{e^{x}+1}=\frac{e^{x}+1-e^{x}}{e^{x}+1}=1-\frac{e^{x}}{e^{x}+1}$.
On pose $u(x)=e^{x}+1$. On a, pour tout réel $x, u(x)>0$ et $u^{\prime}(x)=e^{x}$.
Ainsi $f(x)=1-\frac{u^{\prime}(x)}{u(x)}$ donc une primitive de la fonction f sur \mathbb{R} est la fonction F définie par $F(x)=x-\ln \left(e^{x}+1\right)$.

VIII. Equations différentielles

On rappelle que les solutions sur \mathbb{R} de l'équation différentielle $y^{\prime}=k y$ sont les fonctions $x \mapsto C e^{k x}$ où C est une constante réelle.
Les solutions sur \mathbb{R} de l'équation différentielle $y^{\prime}=a y+b \quad(a \neq 0)$ sont les fonctions $x \mapsto C e^{a x}-\frac{b}{a}$ où C est une constante réelle.

Exercice 91.

$$
y^{\prime}+3 y=11 \text { et } 2 y=5 y=4
$$

Solution

-... $\left(y^{\prime}+3 y=0\right) \Leftrightarrow\left(y^{\prime}=-3 y\right)$. L'ensemble des solutions de cette équation différentielle est l'ensemble des fonctions f définies sur \mathbb{R} par $f(x)=\lambda e^{-3 x}$ où λ est un réel quelconque.

- $\left(2 y^{\prime}-5 y=4\right) \Leftrightarrow\left(y^{\prime}=\frac{5}{2} y+2\right)$. L'ensemble des solutions de cette équation différentielle est l'ensemble des fonctions f définies sur \mathbb{R} par $f(x)=\lambda e^{\frac{5}{2} x}-\frac{4}{5}$ où λ est un réel quelconque.

Exercice 92.

Solution

L'ensemble des solutions de cette équation différentielle est l'enṣemble
des fonctions f définies sur \mathbb{R} par $f(x)=\lambda e^{2 x}-\frac{3}{2}$ où λ est un réel quelconque. La condition initiale donne $f(0)=2$ donc $\lambda e^{0}-\frac{3}{2}=2$ soit $\lambda=\frac{7}{2}$. L'unique solution est donc $f(x)=\frac{7}{2} e^{2 x}-\frac{3}{2}$.

Exercice 93.
Soit (8) Iequation $y^{\prime}+3 y=4 x+1$

1. Soit f ane fonction derivable sir ti Demontree que st f est uno solutiph de (F). Alors Ia fonction f^{\prime} est solution de Iequation differentrelle $\left(E_{1}\right): \quad y+3 y=4$
2. Pisondre Itequation diferentielle (F) . et en deduite que les solutions sur 2 de l'equation diferentielle (P) som les tonctions de

3. Deferminer la solution de (b) Gerifant la condition fritile $y(1)=1$

Solution

1. Soit f une solution de (E).

Pour tout réel $\cdot x, \quad f^{\prime}(x)=-3 f(x)+4 x+1$ et comme les fonctions $x \mapsto-3 f(x)$. et $x \mapsto 4 x+1$ sont dérivables sur \mathbb{R}; la fonction f^{\prime} est aussi dérivable sur \mathbb{R} et $f^{\prime \prime}(x)+3 f^{\prime}(x)=4$. La fonction • f^{\prime} est donc solution de l'équation différentielle $\left(E_{1}\right): \quad y^{\prime}+3 y=4$.
2. Les solutions sur \mathbb{R} de $\left(E_{1}\right): y^{\prime}+3 y=4$. sont les fonctions $x \mapsto A e^{-3 x}+\frac{4}{3}$ où A est une constante réelle.

- Si f est une solution de (E) alors f^{\prime} est une solution de $\left(E_{1}\right)$ donc il existe un réel A tel que $f^{\prime}(x)=A e^{-3 x}+\frac{4}{3}$. Donc $f(x)=-\frac{A}{3} e^{-3 x}+\frac{4}{3} x+K$ avec $K \in \mathbb{R}$.
Comme f est solution de.$(E) ; f^{\prime}(x)+3 f(x)=4 x+1$ donc $\frac{4}{3}+3 K=1 \quad$ d'où $\quad K=-\frac{1}{9}$. En posant $C=-\frac{A}{3}, \quad$ on a a
$f(x)=\frac{4}{3} x-\frac{1}{9}+C e^{-3 x}$.
- Étudions la réciproque. On pose, pour tout réel x, $f(x)=\frac{4}{3} x-\frac{1}{9}+C e^{-3 x}$ avec $C \in \mathbb{R}$.
On a alors $f^{\prime}(x)+3 f(x)=-3 C e^{-3 x}+\frac{4}{3}+3 C e^{-3 x}+4 x-\frac{1}{3}=4 x+1$. donc f est une solution sur \mathbb{R} de (E).
Finalement, les solutions sur \mathbb{R} de (E) sont les fonctions $x \mapsto \frac{4}{3} x-\frac{1}{9}+C e^{-3 x}$ où C est une constante réelle.

3. Soit f une solution de (E) telle que $f(0)=1$, alors il existe un réel C tel que $f(x)=\frac{4}{3} x-\frac{1}{9}+C e^{-3 x}$.
$(f(0)=1) \Leftrightarrow\left(C-\frac{1}{9}=1\right) \Leftrightarrow\left(C=\frac{10}{9}\right) \cdot$ La solution de (E) telle que
$f(0)=1$ est la fonction définie sur \mathbb{R} par $f(x)=\frac{4}{3} x-\frac{1}{9}+\frac{10}{9} e^{-3 x}$.

Exercice 94.

On considere lequastion differentielle : $y^{\prime}+4 y=3 E^{-r}(E)$
1: Determiner le ifel λ tel que lo fonction 9 dehinic fir R por $g(t)=$ the ${ }^{\text {at }}$ soil solution de (t)
2. Wonirer quinic fonction f est solition de (P). Si, et senlement st Ia foptiont $f=g$ est sintim de lequation diferentielle (Ety $y=4 y=0$
3. Désoudre sur Mr. Iequation differnatiele (th)

Solution

1. Pour tout réel $x, g(x)=\lambda e^{-5 x}$. g est solution de (E) si, et seulement si, pour tout x appartenant à $\mathbb{R}, g^{\prime}(x)+4 g(x)=3 e^{-5 x}$. Or $g^{\prime}(x)+4 g(x)=-5 \lambda e^{-5 x}+4 \lambda e^{-5 x}=-\lambda e^{-5 x}$ donc $\lambda=-3$.
Ainsi la fonction définie sur \mathbb{R} par $g(x)=-3 e^{-5 x}$ est une solution de l'équation différentielle (E).
2. Nous avons les équivalences suivantes :
$(f$ solution de $(E)) \Leftrightarrow\left(\forall x \in \mathbb{R}, f^{\prime}(x)+4 f(x)=g^{\prime}(x)+4 g(x)\right)$.
$(f$ solution de $(E)) \Leftrightarrow\left(\forall x \in \mathbb{R}, f^{\prime}(x)-g^{\prime}(x)+4 f(x)-4 g(x)=0\right)$.
$(f$ solution de $(E)) \Leftrightarrow\left(\forall x \in \mathbb{R},(f-g)^{\prime}(x)+4(f-g)(x)=0\right)$.
$(f$ solution de $(E)) \Leftrightarrow\left(f-g\right.$ solution de $\left.\left(E^{\prime}\right)\right)$.
3. On a $\left(E^{\prime}\right) y^{\prime}=-4 y$.

Les solutions sur \mathbb{R} de $\left(E^{\prime}\right)$ sont les fonctions $x \mapsto C e^{-4 x}$ où C est une constante réelle.
4. D'après les questions 2 et $3, f$ est solution de (E) si, et seulement si, $f(x)-g(x)=C e^{-4 x}$ donc $f(x)=-3 e^{-5 x}+C e^{-4 x}$.
Les solutions sur \mathbb{R} de l'équation différentielle (E) sont les fonctions $x \mapsto-3 e^{-5 x}+C e^{-4 x}$ où C est une constante réelle.

Exercice 95.

1. Tiesontra lequatou diferentielte $y_{t}=3 y=0$. (t)

2. Demputrer que les somions re \mid Fit siout les fonictions ff detinies:

Solution

1. Les solutions sur \mathbb{R} de (E) sont les fonctions $x \mapsto C e^{3 x}$ où C est une constante réelle.
2. Soit P un polynôme du second degré : $P(x)=a x^{2}+b x+c$ où a, b et c sont trois réels, $a \neq 0$. On a $P^{\prime}(x)=2 a x+b$. P est solution de $\left(E^{\prime}\right)$ si, et seulement si, pour tout réel $x, P^{\prime}(x)-3 P(x)=3 x^{2}-2 x$. $P^{\prime}(x)-3 P(x)=-3 a x^{2}+(2 a-3 b) x+b-3 c$ donc il suffit de prendre $\left\{\begin{array}{l}-3 a=3 \\ 2 a-3 b=-2 \\ b-3 c=0\end{array} \Leftrightarrow\left\{\begin{array}{l}a=-1 \\ b=0 \\ c=0\end{array} . P(x)=-x^{2}\right.\right.$ est une solution de $\left(E^{\prime}\right)$.
3. $\left(f\right.$ solution de $\left.\left(E^{\prime}\right)\right) \Leftrightarrow\left(\forall x \in \mathbb{R}, f^{\prime}(x)-3 f(x)=P^{\prime}(x)-3 P(x)\right)$.
$\left(f\right.$ solution de $\left.\left(E^{\prime}\right)\right) \Leftrightarrow\left(\forall x \in \mathbb{R},(f-P)^{\prime}(x)-3(f-P)(x)=0\right)$. $(f$ solution de $(E)) \Leftrightarrow\left(\forall x \in \mathbb{R},(f-P)(x)=k e^{3 x}\right)$.
Les solutions sont les fonctions définies sur \mathbb{R} par $f_{k}(x)=k e^{3 x}-x^{2}$.
4. La courbe passe par le point de coordonnées $(1,-2)$ donc il existe un réel k tel que $f(x)=k e^{3 x}-x^{2}$ et $f(1)=-2$.
$\left(k e^{3}-1=-2\right) \Leftrightarrow\left(k e^{3}=-1\right) \Leftrightarrow\left(k=-e^{-3}\right)$.
$f(x)=-e^{3 x-3}-x^{2}$. Une équation de la courbe est $y=-e^{3 x-3}-x^{2}$.

Exercice 96.

On cinsidere lequation differentielle: $y^{\prime}=7 y^{\prime}=1=(\mathrm{f})$.

1. Xontur quime fonction f est solition de (E (si, et- senlement si: la fonction $t=f$ est solution dr $y t=(y=0,(E)$
2. Besoudrellequation Iiferentielle (B).

3:. Dedermizer ait polynine 7 . du trosieme degre: fel gue
 (${ }^{2}$)
 ets solition de (b)
5. Détemunar tontes les solutions de Lequation Altérentielle (F)
 $f(0)=\frac{2350}{343}$

Solution

1. $(f$ solution de $(E)) \Leftrightarrow\left(\forall x \in \mathbb{R}, f^{\prime \prime}(x)-7 f^{\prime}(x)=0\right)$.
$(f$ solution de $(E)) \Leftrightarrow\left(\forall x \in \mathbb{R}, F^{\prime}(x)-7 F(x)=0\right)$. $(f$ solution de $(E)) \Leftrightarrow\left(F\right.$ solution de $\left.\left(E_{1}\right)\right)$.
2. Les solutions sur \mathbb{R} de $\left(E_{1}\right)$ sont les fonctions $x \mapsto C e^{7 x}$ où C est un réel quelconque. D'après la question 1 , les solutions de (E) sont les primitives des fonctions solutions de $\left(E_{1}\right)$. Si C est un réel quelconque, alors $A=\frac{C}{7}$ est aussi un réel quelconque. Les solutions de $\left(E_{1}\right)$ sont
donc les fonctions $x \mapsto 7 A e^{7 x}$ où A est un réel quelconque. Les solutions de (E) sont donc les fonctions $x \mapsto A e^{7 x}+B$ où A et B sont deux constantes réelles.
3. Soit $P(x)=a x^{3}+b x^{2}+c x+d$ où a, b, c et d sont des réels, $(a \neq 0)$. Comme $P(0)=0$ on a $d=0$.
Pour tout réel $x, P^{\prime}(x)=3 a x^{2}+2 b x+c$ et $P^{\prime \prime}(x)=6 a x+2 b$.
Comme P est solution de (E^{\prime}) pour tout réel x, on a :
$\left(P^{\prime \prime}(x)-7 P^{\prime}(x)=x^{2}+1\right) \Leftrightarrow\left(6 a x+2 b-7\left(3 a x^{2}+2 b x+c\right)=x^{2}+1\right)$.
$\left(P^{\prime \prime}(x)-7 P^{\prime}(x)=x^{2}+1\right) \Leftrightarrow\left(-21 a x^{2}+(6 a-14 b) x+2 b-7 c=x^{2}+1\right)$.
Pour déterminer le polynôme P, il suffit de prendre :
$\left\{\begin{array}{l}-21 a=1 \\ 6 a-14 b=0 \\ 2 b-7 c=1\end{array} \Leftrightarrow\left\{\begin{array}{l}a=-\frac{1}{21} \\ b=\frac{3}{7} a=-\frac{1}{49} \\ c=\frac{2 b-1}{7}=-\frac{51}{343}\end{array} \quad . \quad P(x)=-\frac{1}{21} x^{3}-\frac{1}{49} x^{2}-\frac{51}{343} x\right.\right.$.
4. On a les équivalences suivantes :
$\left(f\right.$ solution de $\left.\left(E^{\prime}\right)\right) \Leftrightarrow\left(\forall x \in \mathbb{R}, f^{\prime \prime \prime}(x)-7 f^{\prime}(x)=P^{\prime \prime}(x)-7 P^{\prime}(x)\right)$.
$\left(f\right.$ solution de $\left.\left(E^{\prime}\right)\right) \Leftrightarrow\left(\forall x \in \mathbb{R}, f^{\prime \prime}(x)-P^{\prime \prime}(x)-7 f^{\prime}(x)+7 P^{\prime}(x)=0\right)$.
$\left(f\right.$ solution de $\left.\left(E^{\prime}\right)\right) \Leftrightarrow\left(\forall x \in \mathbb{R},(f-P)^{\prime \prime}(x)-7(f-P)^{\prime}(x)=0\right)$. $\left(f\right.$ solution de $\left.\left(E^{\prime}\right)\right) \Leftrightarrow(f-P$ solution de $(E))$.
5. D'après les questions 2 et $4, f-P$ est une solution de (E^{\prime}) si, et seulement si, pour tout réel $x, f(x)-P(x)=A e^{7 x}+B$ où A et B sont deux constantes réelles. Finalement les solutions de (E^{\prime}) sont les fonctions f définies sur \mathbb{R} par:

$$
f(x)=A e^{7 x}-\frac{1}{21} x^{3}-\frac{1}{49} x^{2}-\frac{51}{343} x+B .
$$

6. Soit f une solution de (E^{\prime}). Il existe deux réels A et B tels que, pour tout réel $x, f(x)=A e^{7 x}-\frac{1}{21} x^{3}-\frac{1}{49} x^{2}-\frac{51}{343} x+B$.

$$
f^{\prime}(x)=7 A e^{7 x}-\frac{1}{7} x^{2}-\frac{2}{49} x-\frac{51}{343} .
$$

$\left\{\begin{array}{l}f(0)=2 \\ f^{\prime}(0)=\frac{2350}{343}\end{array} \Leftrightarrow\left\{\begin{array}{l}A+B=2 \\ 7 A-\frac{51}{343}=\frac{2350}{343}\end{array} \Leftrightarrow\left\{\begin{array}{l}7 A=\frac{2401}{343} \\ A+B=2\end{array} \Leftrightarrow\left\{\begin{array}{l}A=\frac{2401}{2401}=1 \\ B=1\end{array}\right.\right.\right.\right.$.
La solution de $\left(E^{\prime}\right)$ telle que $f(0)=1$ et $f^{\prime}(0)=\frac{2350}{343}$ est la fonction définie sur \mathbb{R} par $f(x)=e^{7 x}-\frac{1}{21} x^{3}-\frac{1}{49} x^{2}-\frac{51}{343} x+1$.

Exercice 97

On considere lequation dilterentiolle $1^{\prime}+44^{\prime}=0(E)$

2. Rés Cutre lequation difleverielle (A)
3. Pour tout réel ta. on pose y (er) a cos $(x)+b \sin (x)$ an a dit b sont des recels. Déterminer des rede a en th tels que g. Yerifie Tequalion diffentielle f^{\prime} toy . 26 cos (ω). (μ).
4. Wentrer que f est solution de (E) si, et sevilmentsit I, g est solutionde (E)
5. Determiner toutis les colutions de Iequation differentielle 1 L .
6. Detemmix la solution do (F) veriliant $f(0)=0$ er $f(0)=0$

Solution

1. On pose $F=f^{\prime}$.
$(f$ solution de $(E)) \Leftrightarrow\left(\forall x \in \mathbb{R}, f^{\prime \prime}(x)+5 f^{\prime}(x)=0\right)$.
$(f$ solution de $(E)) \Leftrightarrow\left(\forall x \in \mathbb{R}, F^{\prime}(x)+5 F(x)=0\right)$. $(f$ solution $\operatorname{de}(E)) \Leftrightarrow\left(F\right.$ solution de $\left.\left(E_{1}\right)\right)$.
2. Les solutions sur \mathbb{R} de $\left(E_{1}\right)$ sont les fonctions $x \mapsto C e^{-5 x}$ où C est un réel quelconque. D'après la question 1 , les solutions de (E) sont les primitives des fonctions solutions de $\left(E_{1}\right)$. Si C est un réel quelconque, alors $A=-\frac{C}{5}$ est aussi un réel quelconque. Les solutions de $\left(E_{1}\right)$ sont donc les fonctions $x \mapsto-5 A e^{-5 x}$ où A est un réel quelconque. Les solutions de (E) sont donc les fonctions $x \mapsto A e^{-5 x}+B$ où A et B sont deux constantes réelles.
3. Pour tout réel $x, g(x)=a \cos (x)+b \sin (x)$,
$g^{\prime}(x)=-a \sin (x)+b \cos (x)$ et $g^{\prime \prime}(x)=-a \cos (x)-b \sin (x)$.
g est une solution de $\left(E^{\prime}\right)$ si, et seulement si, pour tout réel x, on a :
$g^{\prime \prime}(x)+5 g^{\prime}(x)=26 \cos (x) \Leftrightarrow(5 b-a) \cos (x)-(b+5 a) \sin (x)=26 \cos (x)$
Donc il suffit de prendre $\left\{\begin{array}{l}5 b-a=26 \\ b+5 a=0\end{array} \Leftrightarrow\left\{\begin{array}{l}a=5 b-26 \\ 26 b-5 \times 26=0\end{array} \Leftrightarrow\left\{\begin{array}{l}a=-1 \\ b=5\end{array}\right.\right.\right.$.
Finalement, $g(x)=-\cos (x)+5 \sin (x)$.
4. On a les équivalences suivantes :
$\left(f\right.$ solution de $\left.\left(E^{\prime}\right)\right) \Leftrightarrow\left(\forall x \in \mathbb{R}, f^{\prime \prime}(x)+5 f^{\prime}(x)=g^{\prime \prime}(x)+5 g^{\prime}(x)\right)$. $\left(f\right.$ solution de $\left.\left(E^{\prime}\right)\right) \Leftrightarrow\left(\forall x \in \mathbb{R}, f^{\prime \prime}(x)-g^{\prime \prime}(x)+5 f^{\prime}(x)-5 g^{\prime}(x)=0\right)$. $\left(f\right.$ solution de $\left.\left(E^{\prime}\right)\right) \Leftrightarrow\left(\forall x \in \mathbb{R},(f-g)^{\prime \prime}(x)+5(f-g)^{\prime}(x)=0\right)$. $\left(f\right.$ solution de $\left.\left(E^{\prime}\right)\right) \Leftrightarrow(f-g$ solution de $(E))$.
5. D'après les questions 2 et $4, f-g$ est une solution de (E) si, et seulement si, pour tout réel $x, f(x) \dot{-g}(x)=A e^{-5 x}+B$ où A et B sont deux constantes réelles. Finalement les solutions de $\left(E^{\prime}\right)$ sont les fonctions f définies sur \mathbb{R} par $f(x)=A e^{-5 x}+B-\cos (x)+5 \sin (x)$.
6. Soit f une-solution de $\left(E^{\prime}\right)$. Il existe deux réels A et B tels que, pour tout réel x, on a: $f(x)=A e^{-5 x}+B-\cos ^{\prime}(x)+5 \sin (x)$.
On a : $f^{\prime}(x)=-5 A e^{-5 x}+\sin (x)+5 \cos (x)$.

$$
\left\{\begin{array} { l }
{ f (0) = 0 } \\
{ f ^ { \prime } (0) = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ A + B - 1 = 0 } \\
{ 5 - 5 A = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
A=1 \\
B=0
\end{array} .\right.\right.\right.
$$

La solution de $\left(E^{\prime}\right)$ telle que $f(0)=0$ et $f^{\prime}(0)=0$ est la fonction f définie sur \mathbb{R} par $f(x)=e^{-5 x}-\cos (x)+5 \sin (x)$.

IX. Symétrie

\checkmark Aæe de symétrie

Exercice 98.

1. Btadien les limites tef en

2. Viontre gue la droite (D) disyution $x=2$ ert wil axe de syméthe de la counte:

Solution

1. Pour tout réel x non nul, $x^{2}+4 x-5=x^{2}\left(1+\frac{4}{x}-\frac{5}{x^{2}}\right)$ donc $\lim _{x \rightarrow+\infty}\left(x^{2}+4 x-5\right)=+\infty$ et $\lim _{x \rightarrow-\infty}\left(x^{2}+4 x-5\right)=+\infty$.
De plus $\lim _{x \rightarrow+\infty} e^{X}=+\infty$ donc d'après le théorème sur la limite de la composée de deux fonctions $\lim _{x \rightarrow-\infty} f(x)=+\infty$ et $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
2. La fonction f est dérivable sur \mathbb{R}. On pose $u(x)=x^{2}+4 x-5$. $u^{\prime}(x)=2 x+4$ et $f^{\prime}(x)=u^{\prime}(x) e^{u(x)}$ donc $f^{\prime}(x)=2(x+2) e^{x^{2}+4 x-5}$. $f^{\prime}(x)$ est du signe de $2 x+4$. On en déduit:

- $\left(f^{\prime}(x)=0\right) \Leftrightarrow(x=-2)$.
- $\quad\left(f^{\prime}(x)<0\right) \Leftrightarrow(x<-2)$.
- $\left(f^{\prime}(x)>0\right) \Leftrightarrow(x>-2)$.
f est strictement décroissante sur $[-\infty ;-2]$. et f est strictement croissante sur $[-2 ;+\infty]$.

3. Méthode du changement de repère.

On effectue un changement de repère en prenant $\Omega(-2,0)$ pour nouvelle origine. On appelle (x, y) les coordonnées de M dans le repère (O, \vec{i}, \vec{j}) et (X, Y) les coordonnées de M dans le repère $(\Omega, \vec{i}, \vec{j})$. $\overrightarrow{O M}\binom{x}{y}, \overrightarrow{O \Omega}\binom{-2}{0}$ et $\overrightarrow{\Omega M}\binom{X}{Y}$.
Pour tout point M du plan, on a $\overrightarrow{O M}=\overrightarrow{O \Omega}+\overrightarrow{\Omega M}$. En égalisant les coordonnées des vecteurs, on obtient les formules de changement de repère $\left\{\begin{array}{l}x=X-2 \\ y=Y\end{array} \quad\left(M(x, y) \in C_{f}\right) \Leftrightarrow(x \in \mathbb{R}\right.$ et $f(x)=y)$. $\left(M(x, y) \in C_{f}\right) \Leftrightarrow(X \in \mathbb{R}$ et $f(X-2)=Y)$.
$\left(M(x, y) \in C_{f}\right) \Leftrightarrow\left(X \in \mathbb{R}\right.$ et $\left.Y=e^{X^{2}-9}\right)$.
On pose $g(x)=e^{x^{2}-9} \because$ L'ensemble de définition de g est $D_{g}=\mathbb{R}$ qui est centré en 0 (si $x \in D_{g}$ alors $-x \in D_{g}$). D'autre part, pour tout réel x, $g(-x)=e^{(-x)^{2}-9}=e^{x^{2}-9}=g(x)$.
La représentation graphique de f dans (O, \vec{i}, \vec{j}) est la représentation graphique de g dans $(\Omega, \vec{i}, \vec{j})$. Or la fonction g est paire, donc la représentation graphique admet l'axe des ordonnées comme axe de symétrie. Cet axè a pour équation $X=0$ dans $(\Omega, \vec{i}, \vec{j})$ et pour équation $x=-2$ dans (O, \vec{i}, \vec{j}). La droite (D) d'équation $x=-2$ est. l'axe de symétrie de C_{f}.
Méthode utilisant les formules.
Si , pour tout x appartenant à E_{f} (symétrique par rapport à a), $f(2 a-x)=f(x)$ alors la courbe représentative de f admet la droite d'équation $x=a$ comme axe de symétrie.
Pour tout réel $x, f(2 \times(-2)-x)=e^{(-4-x)^{2}+4(-4-x)-5}=e^{x^{2}+4 x-5}=f(x)$.
Autre formulation: Si, pour tout x appartenant à \mathfrak{R}, tel que $a+x$ appartienne à E_{f} (symétrique par rapport à $\left.a\right), f(a+x)=f(a-x)$ alors la courbe représentative de f admet la droite d'équation $x=a$ comme axe de symétrie.
Dans notre exercice, il suffit de montrer que, pour tout réel x, $f(-2-x)=f(-2+x)$.

\checkmark Centre de symétrie

Exercice 99.

Onf considere la fonction refhil pour tout bel, x nom iny pat

1. Etudier les lumites de fictitex et tho
2. Phudier les limies te fit cuand tend vers 0 par whentrat superieurez puls par anleurs inferientrs:
3. Enededuricles symptote te C,
4. Calculer ta derives de fi Dtadier les vaizimos de f.
5. Montret gue le point $P\left(0, \frac{1}{2}\right)$. est centre de symetrie de la courbe C,

Solution

1. Limite en $+\infty$. Pour tout x non nul, on a :
$f(x)=\frac{e^{x}\left(2+\frac{3}{e^{x}}\right)}{e^{x}\left(1-\frac{1}{e^{x}}\right)}=\frac{2+\frac{3}{e^{x}}}{1-\frac{1}{e^{x}}}$. On en déduit que $\lim _{x \rightarrow+\infty} f(x)=2$.
Limite en $-\infty$. $\lim _{x \rightarrow-\infty} e^{x}=0$ et $\lim _{X \rightarrow 0} \frac{2 X+3}{X-1}=-3$ (car la fonction $x \mapsto \frac{2 x+3}{x-1}$ est continue en 0) donc $\lim _{x \rightarrow-\infty} f(x)=-3$.
2. On a : $\lim _{x \rightarrow 0^{+}}\left(e^{x}-1\right)=0^{+}$car si $x>0$ alors $e^{x}>1$.

De plus $\lim _{x \rightarrow 0^{+}}\left(2 e^{x}+3\right)=5$ donc $\lim _{x \rightarrow 0^{+}} f(x)=+\infty$.
$\lim _{x \rightarrow 0^{-}}\left(e^{x}-1\right)=0^{-}$et $\lim _{x \rightarrow 0^{-}}\left(2 e^{x}+3\right)=5$ donc $\lim _{x \rightarrow 0^{-}} f(x)=-\infty$.
3. Asymptotes.

- $\lim _{x \rightarrow+\infty} f(x)=2$ donc C_{f} admet la droite (D) d'équation $y=2$ comme asymptote horizontale au voisinage de $+\infty$.
- $\lim _{x \rightarrow-\infty} f(x)=-3$ donc C_{f} admet la droite $\left(D^{\prime}\right)$ d'équation $y=-3$ comme asymptote horizontale au voisinage de $-\infty$.
- $\lim _{x \rightarrow 0^{+}} f(x)=+\infty$ donc C_{f} admet la droite (Δ) d'équation $x=0$ comme asymptote.

4. f est dérivable sur \mathbb{R}^{*} et, pour tout réel non nul x,
$f^{\prime}(x)=\frac{2 e^{x}\left(e^{x}-1\right)-\left(2 e^{x}+3\right) e^{x}}{\left(e^{x}-1\right)^{2}}=\frac{-5 e^{x}}{\left(e^{x}-1\right)^{2}}$.
Pour tout réel non nul $x, f^{\prime}(x)<0$.
La fonction f est strictement décroissante sur $]-\infty ; 0[$ et sur $] 0 ;-\infty[$.
5. On effectue un changement de repère en prenant Ω pour nouvelle origine. Pour tout point M du plan, on a : $\overrightarrow{O M}=\overrightarrow{O \Omega}+\overrightarrow{\Omega M}$.
On appelle (x, y) les coordonnées de M dans le repère (O, \vec{i}, \vec{j}) et (X, Y) les coordonnées de M dans le repère $(\Omega, \vec{i}, \vec{j})$).
$\overrightarrow{O M}\binom{x}{y}, \overrightarrow{O \Omega}\binom{0}{-\frac{1}{2}}$ et $\overrightarrow{\Omega M}\binom{X}{Y}$.
Les formules de changement de repère sont $\left\{\begin{array}{l}x=X \\ y=-\frac{1}{2}+Y\end{array}\right.$.
$\left(M(x, y) \in C_{f}\right) \Leftrightarrow\left(x \in \mathbb{R}^{*}\right.$ et $\left.f(x)=y\right)$.
$\left(M(x, y) \in C_{f}\right) \Leftrightarrow\left(X \in \mathbb{R}^{*}\right.$ et $\left.f(X)=-\frac{1}{2}+Y\right)$.
$\left(M(x, y) \in C_{f}\right) \Leftrightarrow\left(X \in \mathbb{R}^{*}\right.$. et $\left.Y=\frac{5}{2} \times \frac{e^{X}+1}{e^{X}-1}\right)$.
Pour tout x non nul, on pose $g(x)=\frac{5\left(e^{x}+1\right)}{2\left(e^{x}-1\right)}$. L'ensemble de définition de g est $D_{g}=\mathbb{R}^{*}$ qui est centré en 0 (si $x \in D_{g}$ alors $-x \in D_{g}$). D'autre part, pour tout réel x, $g(-x)=\frac{5\left(e^{-x}+1\right)}{2\left(e^{-x}-1\right)}=\frac{5\left(e^{-x}+1\right) e^{x}}{2\left(e^{-x}-1\right) e^{x}}=-\frac{5\left(e^{x}+1\right)}{2\left(e^{x}-1\right)}=-g(x)$.
La représentation graphique de f dans $(0, \overrightarrow{i,} \vec{j})$ est la représentation graphique de g dans $(\Omega, \vec{i}, \vec{j})$. Or la fonction g est impaire, donc la représentation graphique admet l'origine, Ω, comme centre de symétrie.

Méthode utilisant les formules.
Si, pour tout x appartenant à E_{f} (symétrique par rapport à a), $\frac{f(2 a-x)+f(x)}{2}=b$ alors la courbe représentative de f admet le point $\Omega(a, b)$ comme centre de symétrie.
Autre formulation: si, pour tout x appartenant à \mathbb{R}, tel que $a+x$ appartienne à E_{f} (symétrique par rapport à a), $\frac{f(a+x)+f(a-x)}{2}=b$ alors la courbe représentative de f admet le point $\Omega(a, b)$ comme centre de symétrie.
Pour tout réel non nul $x, \frac{f(2 \times 0-x)+f(x)}{2}=\frac{\frac{2 e^{-x}+3}{e^{-x}-1}+\frac{2 e^{x}+3}{e^{x}-1}}{2}$ soit $\frac{f(2 \times 0-x)+f(x)}{2}=\frac{-2+e^{-x}+e^{x}}{2\left(e^{x}-1\right)\left(e^{-x}-1\right)}$.
$\frac{f(2 \times 0-x)+f(x)}{2}=\frac{-\left(e^{x}-1\right)\left(e^{-x}-1\right)}{2\left(e^{x}-1\right)\left(e^{-x}-1\right)}=-\frac{1}{2}$.
On en déduit que $\Omega\left(0,-\frac{1}{2}\right)$ est centre de symétrie.

Courbe représentative de f et centre de symétrie

X. Problèmes

Exercice 100 :

 repere (0ti)

Partize 4

 demont ret que fret foritiuit en of
 decriontrer que t est Jerivable en 0
3. Déermiter la limite de f en $+\infty$.
4. Determiner la derivée f de la fonition f sur f, f at
5. Debeminer les vorizions de la forction f :

Partie B

1. Calculer la deniverefto t

Partie C

 pestifion reblivedere et (A)
3. Deteminer le nombre te solution: de tequelion fifs:- 5 . sut
 eclution:

Solution

Partie A

1. Pour tout $\left.x_{0} \in\right] 0 ;+\infty\left[\right.$, Ia fonction $x \mapsto-\frac{1}{x}$ est continue en x_{0} et la fonction $x \mapsto e^{x}$ est continue en $-\frac{1}{x_{0}}$ donc la fonction $x \mapsto e^{-\frac{1}{x}}$ est continue en x_{0} (composée de fonctions continues). La fonction $x \mapsto x+1$ est continue en x_{0} donc la fonction $x \mapsto(x+1) e^{-\frac{1}{x}}$ c'est-àdire f est continue en x_{0} (produit de fonctions continues).
Finalement, la fonction f est continue sur $] 0 ;+\infty[$.
Continuité en $0: \lim _{x \rightarrow 0^{+}}-\frac{1}{x}=-\infty$ et. $\lim _{x \rightarrow-\infty} e^{x}=0$ donc d'après le théorème sur la limite de la composée de deux fonctions $\lim _{x \rightarrow 0^{+}} e^{-\frac{1}{x}}=0$. Comme $\lim _{x \rightarrow 0^{+}}(x+1)=1$ on a $\lim _{x \rightarrow 0^{+}}(x+1) e^{-\frac{1}{x}}=0$ soit $\lim _{x \rightarrow 0^{+}} f(x)=f(0)$. f est continue en 0 .
2. Pour tout $\left.x_{0} \in\right] 0 ;+\infty\left[\right.$, la fonction $x \mapsto e^{-\frac{1}{x}}$ est dérivable en x_{0} (composée de fonctions dérivables) et la fonction $x \mapsto x+1$ est dérivable en x_{0} donc la fonction $x \mapsto(x+1) e^{-\frac{1}{x}}$ c'est-à-dire f est donc
dérivable en x_{0} (produit de fonctions dérivables).
Finalement, la fonction f est dérivable sur $] 0 ;+\infty[$.
Dérivabilité en 0 : pour tout x strictement positif,

$$
\begin{aligned}
& \frac{f(x)-f(0)}{x}=\frac{f(x)}{x}=\frac{(x+1) e^{-\frac{1}{x}}}{x}=e^{-\frac{1}{x}}+\frac{1}{x} e^{-\frac{1}{x}}=e^{-\frac{1}{x}}-\left(-\frac{1}{x} e^{-\frac{1}{x}}\right) . \\
& \lim _{x \rightarrow 0^{+}}-\frac{1}{x}=-\infty \text { et } \lim _{X \rightarrow-\infty} X e^{X}=0 \text { donc } \lim _{x \rightarrow 0^{+}}\left(-\frac{1}{x} e^{-\frac{1}{x}}\right)=0
\end{aligned}
$$

D'autre part $\lim _{x \rightarrow 0^{+}} e^{-\frac{1}{x}}=0$ donc $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}=0$.
La fonction f est donc dérivable en 0 et $f^{\prime}(0)=0$.
3. $\lim _{x \rightarrow+\infty}-\frac{1}{x}=0$ et $\lim _{x \rightarrow 0} e^{x}=1$ (car la fonction exponentielle est continue en 0) donc $\lim _{x \rightarrow+\infty} e^{-\frac{1}{x}}=1$. Comme $\lim _{x \rightarrow+\infty}(x+1)=+\infty$ on a $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
4. Pour tout $x \in] 0 ;+\infty\left[, f^{\prime}(x)=1 \times e^{-\frac{1}{x}}+\frac{1}{x^{2}} \times(x+1) e^{-\frac{1}{x}}\right.$.

$$
f^{\prime}(x)=\frac{\left(x^{2}+x+1\right) e^{-\frac{1}{x}}}{x^{2}}
$$

5. Pour tout $x \in] 0 ;+\infty\left[, x^{2}+x+1>0\right.$ donc $f^{\prime}(x)>0$ et $f^{\prime}(0)=0 . f$ est strictement croissiante sur $[0 ;+\infty[$.

Partie B

1. Pour tout $u \in\left[0 ;+\infty\left[, \varphi^{\prime}(u)=-\left(1 \times e^{-u}-1 \times(u+1) \times e^{-u}\right)\right.\right.$.

$$
\varphi^{\prime}(u)=u e^{-u} \text {. }
$$

2. Pour tout $u \in[0 ;+\infty[,-u \leq 0$. Comme la fonction exponentielle est croissante $e^{-u} \leq e^{0}$ c'est-à-dire $0 \leq e^{-u} \leq 1$ donc $0 \leq u e^{-u} \leq u$ soit

$$
0 \leq \varphi^{\prime}(u) \leq u \text {. }
$$

3. La fonction φ est croissante sur $\left[0 ;+\infty\left[\left(u e^{-u} \geq 0\right)\right.\right.$. Comme $\varphi(0)=0$, pour tout $u \in[0 ;+\infty[, 0 \leq \varphi(u)]$. (on peut même dire que si $u>0$ alors $0<\varphi(u)$; cela servira dans la partie C).

On pose $g(u)=\varphi(u)-\frac{u^{2}}{2}$ pour tout $u \in[0 ;+\infty[$.
On a : $g^{\prime}(u)=\varphi^{\prime}(u)-u$. D'après la question $2, \varphi^{\prime}(u)-u \leq 0$ donc g est décroissante sur $[0 ;+\infty[$. Comme $g(0)=\varphi(0)-0=0$, pour tout $u \in\left[0 ;+\infty\left[, g(u) \leq 0\right.\right.$ donc $\varphi(u) \leq \frac{u^{2}}{2}$.
Conclusion pour tout $u \in\left[0 ;+\infty\left[, 0 \leq \varphi(u) \leq \frac{u^{2}}{2}\right.\right.$

Partie C

1. Pour tout $\left.x>0, \frac{1}{x} \in\right] 0 ;+\infty[$ donc d'après l'encadrement (1), $0 \leq \varphi\left(\frac{1}{x}\right) \leq \frac{1}{2 x^{2}} \Leftrightarrow 0 \leq 1-\left(1+\frac{1}{x}\right) e^{-\frac{1}{x}} \leq \frac{1}{2 x^{2}} \Leftrightarrow 0 \leq x-(x+1) e^{-\frac{1}{x}} \leq \frac{1}{2 x}$ donc $0 \leq x-f(x) \leq \frac{1}{2 x}$.
2. On pose, pour tout réel $x, \varepsilon(x)=f(x)-x$ donc $f(x)=x+\varepsilon(x)$ d'après l'inégalité précédente : $0 \leq-\varepsilon(x) \leq \frac{1}{2 x} \Leftrightarrow-\frac{1}{2 x} \leq \varepsilon(x) \leq 0$.
De plus, $\lim _{x \rightarrow+\infty}-\frac{1}{2 x}=0$ donc $\lim _{x \rightarrow+\infty} \varepsilon(x)=0$. Ainsi la droite (Δ) d'équation $y=x$ est une asymptote oblique à la courbe C.
Position relative de C et (Δ) : pour tout $x>0, f(x)-x=\varepsilon(x)<0$. \dot{C} est donc en dessous de (Δ) sur $[0,+\infty[. C$ et (Δ) ont un point en commun, l'origine.
3. La fonction \dot{f} est continue et strictement croissante sur $[0 ;+\infty[$, $f(0)=0$ et $\lim _{x \rightarrow+\infty} f(x)=+\infty$ donc l'équation $f(x)=5$ admet une seule solution. La calculatrice nous donne $f(5.08) \approx 4.993$ et $f(5.09) \approx 5.003$ donc si on désigne par α la solution de $f(x)=5$, encadrement de α d'amplitude 10^{-2} est $5.08<\alpha<5.09$.

Partie \mathbb{D}

1. On a : $f(a)=(a+1) e^{-\frac{1}{a}}$ et $f^{\prime}(a)=\frac{\left(a^{2}+a+1\right) e^{-\frac{1}{a}}}{a^{2}}$. Une équation de la tangente est donc $y=f^{\prime}(a)(x-a)+f(a)$.

$$
y=(a+1) e^{-\frac{1}{a}}+\frac{\left(a^{2}+a+1\right)(x-a)}{a^{2}} e^{-\frac{1}{a}} \cdot y=\frac{\left(a^{2}+a+1\right) e^{-\frac{1}{a}}}{a^{2}} x-\frac{e^{-\frac{1}{a}}}{a}
$$

2. Intersection de T_{a} et l'axe des abscisses.

$$
\begin{gathered}
\left(\frac{\left(a^{2}+a+1\right) e^{-\frac{1}{a}}}{a^{2}} x-\frac{e^{-\frac{1}{a}}}{a}=0\right) \Leftrightarrow\left(x=\frac{a^{2} e^{-\frac{1}{a}}}{a\left(a^{2}+a+1\right) e^{-\frac{1}{a}}}=\frac{a}{a^{2}+a+1}\right) \\
x=\frac{a}{a^{2}+a+1} .
\end{gathered}
$$

3. $B_{1}\left(\frac{1}{3} ; 0\right), B_{\frac{1}{3}}\left(\frac{3}{13} ; 0\right)$ et $B_{3}\left(\frac{3}{13} ; 0\right)$.
4. Pour tout $a>0, \frac{\frac{1}{a}}{\left(\frac{1}{a}\right)^{2}+\frac{1}{a}+1}=\frac{\frac{1}{a}}{\frac{1+a+a^{2}}{a^{2}}}=\frac{a}{a^{2}+a+1}$
donc $B_{\frac{1}{a}}=B_{a}$.

Partie \mathbb{E}.

- Au point d'abscisse $0,1 a$ tangente est horizontale car. $f^{\prime}(0)=0$ et comme $f(0)=0$ son équation est $y=0$.
- Au point d'abscisse 1 , une équation, de la tangente est $y=\frac{3}{e} x-\frac{1}{e}$.

Exercice 101.

On considere les fondions f et 9 definies sur hat pat

$$
f(x)=\frac{1}{2} x^{2} \operatorname{sithe}\left(\operatorname{et} g(x)=\frac{1}{2} x^{2} t x_{x}\right.
$$

On note C_{2} et C_{t} le repretatativis graplaque dee foncrions if et g dats 1 n repere or thonornie.

$$
\text { Pamlie } 4
$$

1. Determime la fimite de la fonction f en : oo
2. Deferminet la limite de la lonetiont f en $1 . \infty$
3. Onquse $h(x)=f(x) y(x)$. Deferminet ta linute de la fonction Ih: en $t \infty$. Domaer wie interpritation graphique de ce resullat.
4. Brudier la posilifon relative des courtes , G_{i} et Q_{s}.

Partie B

1. Montref que la derivee f ie f whifie : pour tout reel r.

$$
f^{\prime}(t)=(x, 1)(1-x)
$$

2. Findier le sigie de $f($ e . puis en deduire le warisions de la foriction
3. Jresser les tableaux de rariation dee fonetigne of et if:
4. Trasert C etrs

Solution

Partie \mathbb{A}

1. Pour tout réel x; on a $f(x)=x e^{-x}\left(\frac{1}{2} x e^{x}-e^{x}+1\right)$.

On sait que $\lim _{x \rightarrow-\infty} x e^{x}=0$ et $\lim _{x \rightarrow-\infty} e^{x}=0$ donc $\lim _{x \rightarrow-\infty}\left(\frac{1}{2} x e^{x}-e^{x}+1\right)=1$.
De plus $\lim _{x \rightarrow-\infty}-x=+\infty$ et $\lim _{x \rightarrow+\infty} e^{x}=+\infty$ donc $\lim _{x \rightarrow-\infty} e^{-x}=+\infty$ (théorème sur la limite de la composée de deux fonctions) donc $\lim _{x \rightarrow-\infty} x e^{-x}=-\infty$. Finalement, on obtient:

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty
$$

2. $\frac{1}{2} x^{2}-x=x^{2}\left(\frac{1}{2}-\frac{1}{x}\right)$ donc $\lim _{x \rightarrow+\infty}\left(\frac{1}{2} x^{2}-x\right)=+\infty$.
$\lim _{x \rightarrow+\infty}-x=-\infty$ et $\lim _{x \rightarrow-\infty} X e^{x}=0$ donc $\lim _{x \rightarrow+\infty}-x e^{-x}=0$.

Ainsi $\lim _{x \rightarrow+\infty}\left(\frac{1}{2} x^{2}-x-\left(-x e^{-x}\right)\right)=+\infty$ et $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
3. On a $h(x)=f(x)-g(x)=x e^{-x}$ et on a vu que $\lim _{x \rightarrow+\infty} x e^{-x}=0$ donc $\lim _{x \rightarrow+\infty} h(x)=0$.
Comme $f(x)=g(x)+h(x)$ avec $\lim _{x \rightarrow+\infty} h(x)=0$, la courbe C_{g} est une courbe asymptote à la courbe C_{f}.
4. $f(x)-g(x)=h(x)=x e^{-x}$ et $h(x)$ est du signe de x, donc C_{f}. est en dessous de C_{g} sur $]-\infty ; 0\left[\right.$ et C_{f} est au dessus de C_{g} sur $] 0 ;+\infty[$. Les deux courbes se coupent au point d'abscisse 0 .

Partie B

1. f est dérivable sur \mathbb{R} et, pour tout réel x,
$f^{\prime}(x)=x-1+e^{x}-x e^{-x}=(x-1)-e^{-x}(x-1)=(x-1)\left(1-e^{-x}\right)$.
2. On a $\left(1-e^{-x}>0\right) \Leftrightarrow\left(1>e^{-x}\right) \Leftrightarrow\left(e^{x}>1\right) \Leftrightarrow(x>0)$.

x	$-\infty$	\cdots	0		1	$+\infty$
$x-1$	-		-	0	+	
$1-e^{x}$	-	0	+		+	
$f^{\prime}(x)$	+	0	-	0	+	

f est strictement croissante sur $]-\infty ; 0]$ et sur $[1 ;+\infty[$. f est strictement décroissante sur $[0 ; 1]$.
3. Pour la fonction g, on a: $g^{\prime}(x)=x-1$ donc :

x	$-\infty$	1	$+\infty$		
$g^{\prime}(x)$		-	0	+	
g	$+\infty$			$+\infty$	
				$-\frac{1}{2}$	

On utilise le signe de $f^{\prime}(x)$ déterminé dans question 2 de la partie B pour obtenir :

x	$-\infty$		0	1	$+\infty$		
$f^{\prime}(x)$		+	0	-	0	+	
			0				$+\infty$
f							

Représentation graphique des fonctions f et g

Exercice 102.

Partic B

 appelle. C st courby représentative:

1. Determmer la limite de If an $+\infty$

 dabsci: 0 I
2. Determiner les pusitions relatives de (T) et C,

Porvie C

 note C, sa representat on graphiguie.

1. Deverminer la limite de gen t w. (on pourra niliser la parde A)
2. Determimer les variations ife y sur $\mid 0$: \mid. of \mid et dresper le tableat te varistion de 9 .
3. Détermimer les pgitions relatives de O , et C_{1}
4. Trecer C, danis lemeine repare que C

Solution

Partie A

1. Pour tout u appartenant à $\left[1 ;+\infty\left[, \quad \varphi^{\prime}(u)=e^{u}-2 u\right.\right.$ et $\varphi^{\prime \prime}(u)=e^{u}-2$.
$u \geq 1$ donc $e^{u} \geq e$ car la fonction exponentielle est croissante.
Ainsi $\quad e^{u}-2 \geq e-2>0$ et $\varphi^{\prime \prime}(u)>0$ donc φ^{\prime} est strictement croissante sur $\left[1 ;+\infty\left[\right.\right.$. Ainsi si $u \geq 1$ alors $\varphi^{\prime}(u)>\varphi^{\prime}(1)$ et comme $\varphi^{\prime}(1)=e-2>0$ on a $\varphi^{\prime}(u)>0$ et donc φ est strictement croissante sur $[1 ;+\infty]$.
2. Comme φ est strictement croissante sur $[1 ;+\infty[$ si $u \geq 1$ alors $\varphi(u) \geq \varphi(1)$ or $\varphi(1)=e-1>0$ donc φ est positive sur $[1 ;+\infty\rceil$.

Partie B

1. Limite de f en $+\infty$: pour tout $x \in[1 ;+\infty]$, $\varphi(x)>0 \Leftrightarrow \varphi\left(x^{2}\right)>0 \Leftrightarrow e^{x^{2}}>x^{4} \Leftrightarrow e^{-x^{2}}<\frac{1}{x^{4}} \Leftrightarrow x e^{-x^{2}}<\frac{1}{x^{3}}$.
Donc si $x \in\left[1 ;+\infty\left[\right.\right.$ alors $0 \leq f(x) \leq \frac{1}{x^{3}}$. Díaprès le théorème des gendarmes, comme $\lim _{x \rightarrow+\infty} \frac{1}{x^{3}}=0$, on a $\lim _{x \rightarrow+\infty} f(x)=0$.
Sans la partie A : pour tout $x>0, f(x)=-\frac{1}{x}\left(-x^{2}\right) \cdot e^{-x^{2}}$. $\lim _{x \rightarrow+\infty}\left(-x^{2}\right)=-\infty$ et $\lim _{x \rightarrow-\infty} X e^{X}=0$ donc (théorème sur la limite de la composée de deux fonctions) $\lim _{x \rightarrow+\infty}\left(-x^{2} e^{-x^{2}}\right)=0$. De plus $\lim _{x \rightarrow+\infty}\left(-\frac{1}{x}\right)=0$ donc $\lim _{x \rightarrow+\infty} f(x)=0$.
2. La fonction $x \mapsto-x^{2}$ est dérivable sur $[0 ;+\infty[$, la fonction $x \mapsto e^{-x^{2}}$. est dérivable sur $[0 ;+\infty[$ comme composée de fonctions dérivables et enfin $x \mapsto x e^{-x^{2}}$, c'est-à-dire f, est dérivable sur $[0 ;+\infty]$ comme produit de fonctions dérivables.
Pour tout $x \in\left[0 ;+\infty\left[, \quad f^{\prime}(x)=e^{-x^{2}}-2 x^{2} e^{-x^{2}}=\left(1-2 x^{2}\right) e^{-x^{2}}\right.\right.$, donc $f^{\prime}(x)$ est du signe de $\left(1-2 x^{2}\right)$ car $e^{-x^{2}}>0$.
$\left(1-2 x^{2}=0\right) \Leftrightarrow\left(x=-\frac{\sqrt{2}}{2}\right.$ ou $\left.x=\frac{\sqrt{2}}{2}\right)$.

x	0		$\frac{\sqrt{2}}{2}$	$+\infty$	
$1-2 x^{2}$	1	+	0	-	
$f^{\prime}(x)$	1	+	0	-	

On en déduit que f est strictement croissante sur $\left[0 ; \frac{\sqrt{2}}{2}\right]$ et
strictement décroissante sur $\left[\frac{\sqrt{2}}{2} ;+\infty[\right.$.

x	0	$\frac{\sqrt{2}}{2}$	$+\infty$	
$f^{\prime}(x)$	+	0		
		$\frac{1}{2} \sqrt{\frac{2}{e}}$		

3. f est dérivable en 0 , donc C_{f} admet au point d'abscisse 0 une tangente d'équation $y=f^{\prime}(0)(x-0)+f(0)$.
Comme $f^{\prime}(0)=1$ et $f(0)=0$ une équation de la tangente (T) à C_{f} au point d'abscisse $x=0$ est donc $y=x$.
4. La position relative des deux courbes s'obtient en étudiant le signe $f(x)-x$. Pour tout $x \in\left[0 ;+\infty\left[, f(x)-x=x\left(e^{-x^{2}}-1\right)\right.\right.$.
La fonction exponentielle étant strictement croissante sur $\mathbb{R},-x^{2}<0$ implique $e^{-x^{2}}<e^{0}$ donc pour tout $\left.x \in\right] 0 ;+\infty[, f(x)-x<0$ et par conséquent C_{f} est en dessous de $(T) .(T)$ et C_{f} ont le point 0 en commun.

Partie C

1. On utilise la partie A. Pour tout $x \in[1 ;+\infty[$,
$(\varphi(x)>0) \Leftrightarrow\left(\varphi\left(x^{2}\right)>0\right) \Leftrightarrow\left(e^{x^{2}}>x^{4}\right) \Leftrightarrow\left(e^{-x^{2}}<\frac{1}{x^{4}}\right) \Leftrightarrow\left(x^{3} e^{-x^{2}}<\frac{1}{x}\right)$.
Donc si $x \in\left[1 ;+\infty\left[\right.\right.$ alors $0 \leq g(x) \leq \frac{1}{x}$. D'après le théorème des gendarmes, comme $\lim _{x \rightarrow+\infty} \frac{1}{x}=0$, on a : $\lim _{x \rightarrow+\infty} g(x)=0$.
2. g est dérivable sur $[0 ;+\infty[$.

Pour tout $x \in\left[0 ;+\infty\left[, g^{\prime}(x)=3 x^{2} e^{-x^{2}}-2 x^{4} e^{-x^{2}}=x^{2} e^{-x^{2}}\left(3-2 x^{2}\right)\right.\right.$.
$g^{\prime}(x)$ est donc du signe de $\left(3-2 x^{2}\right)$. Les racines du trinôme $\left(3-2 x^{2}\right)$
sont : $-\sqrt{\frac{3}{2}}$ et $\sqrt{\frac{3}{2}}$.

x	0		$\sqrt{\frac{3}{2}}$	
$3-2 x^{2}$		+	0	-
x^{2}	0	+		+
$g^{\prime}(x)$	0	+	0	-

On en déduit que g est strictement croissante sur $\left[0 ; \sqrt{\frac{3}{2}}\right]$ et strictement décroissante sur $\left[\sqrt{\frac{3}{2}} ;+\infty[\right.$.
3. Pour déterminer la position relative des deux courbes, on peut étudier le signe de $f(x)-g(x)$.
Pour tout $x \in\left[0 ;+\infty\left[, f(x)-g(x)=x e^{-x^{2}}-x^{3} e^{-x^{2}}=x\left(1-x^{2}\right) e^{-x^{2}}\right.\right.$.
Le signe de $f(x)-g(x)$ est celui de $x\left(1-x^{2}\right)$.

x	0		1	
x	0	+		$+\infty$
$1-x^{2}$		+	0	-
$f(x)-g(x)$	0	+	0	-

C_{f} est au dessus de C_{g} sur $] 0 ; 1\left[, C_{f}\right.$ est en dessous de C_{g} sur $\mid 1 ;+\infty[$ et les deux courbes se coupent aux points d'abscisses 0 et 1 .

Représentations graphiques des fonctions f et g.

Exercice 103.

 Tappelle C, sa représentation kaplifue dans un wepere orthonorite $\left(9 \pi^{2}\right.$

Portie 4

1. Ftudier la bimite de tran tee et ent 1 . Interpher eraphiquement ce refuliats:
2. Frudier la position relatize de C, et de la droite (A) dequation $y=0$
3. Btudier la limibe de f fn
4. Etudier les variations de far Príser. le miminant de. f sur 4-3:41
5. Dreser le tablewit de ymaimode f. Tracer C,
Partieis

Cn considere lispuation $f(x)$. 1

1. Determiner te montre de esutign de lafuution $f(x)$. 1 , arr tit:
2. On appelle a la plis petite tel equitions de Iequationt $f(x)=$ I

3. On appelle. 3 la plis crande de.solimions de lequation $f(x)=1$.

Solution

Partie A

1. Limite en $+\infty$: $\lim _{x \rightarrow+\infty}-x=-\infty$ et $\lim _{x \rightarrow-\infty} e^{x}=0$ donc $\lim _{x \rightarrow+\infty} e^{-x}=0$ (théorème sur la limite de la composée de deux fonctions).
$\lim _{x \rightarrow+\infty} 2(1-x)=-\infty$ et $\lim _{X \rightarrow-\infty} \frac{1}{X}=0$ donc $\lim _{x \rightarrow+\infty} \frac{1}{2(1-x)}=0$.
Comme $f(x)=e^{-x} \times \frac{1}{2(1-x)}$ on a $\lim _{x \rightarrow+\infty} f(x)=0$.
L'axe des abscisses est donc une asymptote horizontale à la courbe C_{f}
quand x tend vers $+\infty$.
Limite en 1: la fonction $x \mapsto e^{-x}$. est continue en 1 , donc $\lim _{x \rightarrow 1} e^{-x}=e^{-1}=\frac{1}{e} . \quad \lim _{x \rightarrow 1^{-}} 2(1-x)=0^{+} \quad$ et $\quad \lim _{x \rightarrow 1^{+}} 2(1-x)=0^{-} \quad$ donc $\lim _{x \rightarrow 1^{-}} \frac{1}{2(1-x)}=+\infty$ et $\lim _{x \rightarrow 1^{+}} \frac{1}{2(1-x)}=-\infty$. Donc $\lim _{x \rightarrow 1^{-}} f(x)=+\infty$ et $\lim _{x \rightarrow 1^{+}} f(x)=-\infty$. La droite d'équation $x=1$ est donc une asymptote verticale à la courbe C_{f}.
2. La position relative de C_{f} et (Δ) est donnée par l'étude du signe de $f(x)-0=\frac{e^{-x}}{2(1-x)}$. Si $x<1$ alors $\frac{e^{-x}}{2(1-x)}>0$ et si $x>1$ alors $\frac{e^{-x}}{2(1-x)}<0$. Donc C_{f} est au dessus de l'axe des abscisses sur $]-\infty ; 1[$ et C_{f} est en dessous dé l'axe des abscisses sur $\mid 1 ;+\infty[$.
3. Limite en $-\infty$: pour tout réel x non nul et différent de 0 , on a: $f(x)=\frac{e^{-x}}{-x} \times \frac{-x}{2(1-x)} . \quad \lim _{x \rightarrow-\infty}-x=+\infty$. et $\lim _{x \rightarrow+\infty} \frac{e^{X}}{X}=+\infty$ donc $\lim _{x \rightarrow-\infty} \frac{e^{-x}}{-x}=+\infty$. Comme $\lim _{x \rightarrow-\infty} \frac{-x}{2(1-x)}=\frac{1}{2}$ on a $\lim _{x \rightarrow-\infty} f(x)=+\infty$.
4. La fonction f est dérivable sur $\mathbb{R}-\{1\}$. Pour tout $x \neq 1$, on a $f^{\prime}(x)=\frac{-2 e^{-x}(1-x)+2 e^{-x}}{4(1-x)^{2}}=\frac{x e^{-x}}{2(1-x)^{2}} . f^{\prime}(x)$ est du signe de x.
La fonction f est strictement décroissante sur $]-\infty ; 0]$.
La fonction f est strictement croissante sur $[0 ; 1]$ et sur $] 1 ;+\infty[$. Il y a donc un minimum en $x=0$ et $f(0)=\frac{1}{2}$.

x	$-\infty$	0	1		$+\infty$	
$f^{\prime}(x)$		-	0	+	+	
	$+\infty$			$+\infty$		$+\infty$
f						

Partie B

1. Comme $f(x)<0$ si $x \in \mid 1 ;+\infty[$ (partie A.2), l'équation $f(x)=1$ ne peut avoir de solution sur $|1 ;+\infty|$. La fonction ${ }^{-} f$ est continue et strictement décroissante sur $[-\infty ; 0] . \lim _{x \rightarrow-\infty} f(x)=+\infty$ et $f(0)=\frac{1}{2}$. Comme $1 \in\left[\frac{1}{2} ;+\infty[\right.$ l'équation $f(x)=1$ admet une solution sur - $-\infty ; 0]$.

Là fonction. f est continue et strictement croissante sur $[0 ; 1]$, $\lim _{x \rightarrow 1^{-}} f(x)=+\infty$ et $f(0)=\frac{1}{2}$. Comme $1 \in\left[\frac{1}{2} ;+\infty[\right.$ I'équation $f(x)=1$ admet une solution sur $[0 ; 1[$.
L'équation $f(x)=1$ admet donc deux solutions sur \mathbb{R}.
2. Encadrement de $\alpha: \alpha \in[-\infty ; 0]$, on sait que α est la seule
solution sur $\left.\int-\infty ; 0\right]$. La calculatrice nous donne $f(-1.679) \approx 1.0004$ et $f(-1.678) \approx 0.99978$ donc $-1.679<\alpha<-1.678$.
3. Valeur approchée de β : on sait que β est la seule solution sur $[0,1]$ La calculatrice nous donne $f(0.768) \approx 0.99987$. et $f(0.769) \approx 1.0032$ donc $0.768<\beta<0.769$ et $\beta=0.769$ à 10^{-3} près par excès.
4. $\frac{f(\alpha)}{f(\beta)}=\frac{e^{-\alpha}}{2(1-\alpha)} \times \frac{2(1-\beta)}{e^{-\beta}}=e^{\beta-\alpha} \times \frac{1-\beta}{1-\alpha}$.

Comme $f(\alpha)=f(\beta)=1$ et $\frac{f(\alpha)}{f(\beta)}=1$, on a $e^{\beta-\alpha} \times \frac{1-\beta}{1-\alpha}=1$.

Chapitre 4

Lla fonction logarithme

I. Calculs

\checkmark Somme, produit, différence et quotient
Exercice 1.

Solution

- $A=\frac{1}{2} \ln (32)=\frac{1}{2} \ln \left(2^{5}\right)=\frac{5}{2} \ln (2) . A=\frac{5}{2} \ln (2)$.
- $\quad-B=\ln \left(\frac{1}{27}\right)=-\ln \left(3^{3}\right)=-3 \ln (3) . B=-3 \ln (3)$.
- $C=\ln (72)-3 \ln (3)=\ln \left(2^{3} \times 3^{2}\right)-3 \ln (3)$.
$C=3 \ln (2)+2 \ln (3)-3 \ln (3)=3 \ln (2)-\ln (3) \quad C=3 \ln (2)-\ln (3)$.
- $\quad D=5 \ln \left(\frac{\sqrt{3}}{\sqrt{2}}\right)=5(\ln (\sqrt{3})-\ln (\sqrt{2}))=\frac{5}{2}(\ln (3)-\ln (2))$.

$$
D=\frac{5}{2}(\ln (3)-\ln (2)) .
$$

Exercice ${ }^{2}$.
Sans utiliser la calculatrice, calculer $A=\ln (216)=3(\ln (2)) \ln (3)$

Solution

$A=\ln (216)-3 \ln (6)=\ln (216)-\ln \left(6^{3}\right)=\ln (216)-\ln (216)=0$.
Exercice 3.
Simplifer lecriture des rade suivants:

$\left.D=\ln \left(\frac{1}{e}\right)^{2}\right)=\ln ^{2}\left(\frac{1}{e}\right)$

Solution

$A=\ln \left(e^{3}\right)-\ln \left(e^{2}\right)=3 \ln (e)-2 \ln (e)=\ln (e)=1 . \quad A=1$.
$B=\ln \left(e^{2}\right)+\ln \left(e^{\frac{1}{2}}\right)=2 \ln (e)+\frac{1}{2} \ln (e)=\frac{5}{2} \ln (e)=\frac{5}{2}: B=\frac{5}{2}$.
$C=\ln (2)+\ln (8)+\ln (e)-\ln (4)-\ln \left(e^{2}\right)$.
$C=\ln (2)+3 \ln (2)+1-2 \ln (2)-2 . \quad C=2 \ln (2)-1$.
$D=2 \ln \left(\frac{1}{e}\right)-[-\ln (e)]^{2}=-2 \ln (e)-(-1)^{2}=-2-1=-3 . D=-3$.

Exercice 4.

Solution

$\frac{1}{8} \ln \left(a^{32}\right)=\frac{1}{8} \ln \left[\left(a^{2}\right)^{16}\right]=\frac{16}{8} \ln \left(a^{2}\right)=2 \ln \left(a^{2}\right) \cdot \frac{1}{8} \ln \left(a^{32}\right)=2 \ln \left(a^{2}\right)$.
Remarque : on peut écrire $\frac{1}{8} \ln \left(a^{32}\right)=4 \ln (-a)$.
\checkmark Déterminer un ensemble de définition

Exercice 5.

Déterminer lensemble de définition de la fonction $f: x: \ln (2 x=1)$

Solution

La fonction \ln est définie sur $\mathbb{R}_{+}^{*} \cdot\left(x \in E_{f}\right) \Leftrightarrow(2 x-1>0) \Leftrightarrow\left(x>\frac{1}{2}\right)$.
L'ensemble de définition de f est $E_{f}=\frac{1}{2} ;+\infty$.
Exercice 6.
Juterminar lencentlte dey dinilion de la fenction

Solution

La fonction \ln est définie sur \mathbb{R}_{+}^{*}.
$\left(x \in E_{f}\right) \Leftrightarrow(x>0$ et $2-x>0) \Leftrightarrow(x>0$ et $x<2) \Leftrightarrow(0<x<2)$.
L'ensemble de définition de f est $\left.E_{f}=\right] 0 ; 2$.
Exercice 7.
Determiner 1^{\prime} ensemble de définition de la fonction $f: x, \ln (\sin (x))$

Solution

La fonction ln est définie sur \mathbb{R}_{+}^{*}.
$\left(x \in E_{f}\right) \Leftrightarrow(\sin (x)>0) \Leftrightarrow(x \in] 2 k \pi ;(2 k+1) \pi[)$ avec $k \in \mathbb{Z}$.
L'ensemble de définition est $E_{f}=\{2 k \pi ;(2 k+1) \pi[, k \in \mathbb{Z}\}$.
Exercice 8.
Déterminer l'ensemble de definition de fa fonction $f: x+\ln (\ln (x))$

Solution

$\left(x \in E_{f}\right) \Leftrightarrow(x>0$ et $\ln (x)>0) \Leftrightarrow(x>1)$.
L'ensemble de définition de f est $E_{f}=11 ;+\infty$.
Exercice 9.
 int Mindintat)

Solution

$\left(x \in E_{f}\right) \Leftrightarrow(x>0$ et $\ln (\ln (x))>0) \Leftrightarrow(\ln (x)>1) \Leftrightarrow(x>e)$.
L'ensemble de définition de f est $E_{f}=j e ;+\infty$.

Exercice 10.*

Solution

La fonction racine est définie sur \mathbb{R}_{+}et la fonction \ln est définie sur $\mathbb{R}_{+}^{*} \cdot\left(x \in E_{f}\right) \Leftrightarrow\left(x>0\right.$ et $\left.\frac{\ln (x)-1}{\ln (x)+1} \geq 0\right)$.
Un quotient est positif si son numérateur et son dénominateur sont de même signe donc: $\left(\frac{\ln (x)-1}{\ln (x)+1} \geq 0\right)$
$\Leftrightarrow((\ln (x)-1 \geq 0$ et $\ln (x)+1>0)$ ou $(\ln (x)-1 \leq 0$ et $\ln (x)+1<0))$
$\Leftrightarrow\left(\left(x \geq e\right.\right.$ et $\left.x>\frac{1}{e}\right)$ ou $\left(0<x \leq e\right.$ et $\left.\left.0<x<\frac{1}{e}\right)\right)$.
$\Leftrightarrow\left(x \geq e\right.$ ou $\left.0<x<\frac{1}{e}\right)$.
L'ensemble de définition de f est $\left.E_{f}=\right] 0 ; \frac{1}{e}[\cup[e ;+\infty]$.

Résoudre une équation

Exercice 11.

Resoudre dans $\mathrm{TR}^{2} \cdot \ln (1+x)=\ln (1=2 x)$ (1)

Solution

Si x est solution de l'équation (1) alors $1+x=1-2 x$ et donc $x=0$.
On vérifie que 0 est bien solution de (1).
$(\ln (1+x)=\ln (1-2 x)) \Leftrightarrow x=0$.

Exercice 12.

Resculre dans $\mathbb{R}, \ln (3+x)+\ln (x-3)=\ln (5)$

Solution

L'équation est définie si on a: $3+x>0$ et $x-3>0$ c'est-à-dire si

$$
\begin{aligned}
& \left([\ln (\ln (x))]^{2}=16\right) \Leftrightarrow(\ln (\ln (x))=-4 \text { ou } \ln (\ln (x))=4) \\
& \left([\ln (\ln (x))]^{2}=16\right) \Leftrightarrow\left(\ln (x)=e^{-4} \text { ou } \ln (x)=e^{4}\right) \\
& \left([\ln (\ln (x))]^{2}=16\right) \Leftrightarrow\left(x=e^{e^{-4}} \text { ou } x=e^{e^{4}}\right)
\end{aligned}
$$

Les quatre solutions étant supérieures à 1 , on a :

$$
(1) \Leftrightarrow\left(x=e^{e^{-4}} \text { ou } x=e^{e^{-3}} \text { ou } x=e^{e^{3}} \quad \text { ou } x=e^{e^{4}}\right)
$$

L'ensemble S des solutions de (1) est donc:

$$
S=\left\{e^{e^{-4}} ; e^{e^{-3}} ; e^{e^{3}} ; e^{e^{4}}\right\}
$$

\checkmark Résoudre une inéquation

Exercice 1%.

Résoutre dans $\mathbb{R}, \ln \left(-x^{2}+4 x+6\right)<0$ (1)

Solution

L'ensemble de définition de cette inéquation est $] 2-\sqrt{10} ; 2+\sqrt{10}[$. $\left(\ln \left(-x^{2}+4 x+6\right)<0\right) \Leftrightarrow\left(-x^{2}+4 x+6<1\right) \Leftrightarrow\left(-x^{2}+4 x+5<0\right)$.
Les racines du polynôme du second degré $-x^{2}+4 x+5$ sont -1 et 5 donc, $-x^{2}+4 \dot{x}+5<0$ si, et seulement si, $\left.x \in\right]-\infty ;-1[\cup] 5 ;+\infty[$.
L'ensemble S des solutions de (1) est donc:

$$
S=] 2-\sqrt{10} ;-1[\cup] 5 ; 2+\sqrt{10}] .
$$

Exercice 18.

Resoudre dans $\mathbb{R}, \ln (x)+\ln (2-x)+\ln (x+4) \geq \ln (5 x)(1)$

Solution

L'ensemble de définition de cette inéquation est $] 0 ; 2[$.
(1) $\Leftrightarrow\left(\ln \left(\frac{x(2-x)(x+4)}{5 x}\right) \geq 0\right.$ et $\left.0<x<2\right)$.
(1) $\Leftrightarrow\left(\ln \left(\frac{1}{5}(2-x)(x+4)\right) \geq 0\right.$ et $\left.0<x<2\right)$.
$(1) \Leftrightarrow\left(\frac{1}{5}(2-x)(x+4) \geq 1\right.$ et $\left.0<x<2\right)$.
(1) $\Leftrightarrow\left(-x^{2}-2 x+3 \geq 0\right.$ et $\left.0<x<2\right)$. Les racines du polynôme du second degré $-x^{2}-2 x+3$ sont 1 et -3 donc $-x^{2}-2 x+3 \geq 0$ si, et seulement si, $x \in[-3 ; 1]$. Les solutions de (1) ne peuvent être que dans $] 0 ; 2[$, donc $(\ln (x)+\ln (2-x)+\ln (x+4) \geq \ln (5 x)) \Leftrightarrow(x \in] 0 ; 1])$.
L'ensemble S des solutions de (1) est donc $S=[0 ; 1$.

Exercice 19.

Résoudre dans $\mathbb{R} ; \ln \left(x^{2}+9 x+20\right)<\ln (x+13)$ (1)

Solution

L'ensemble de définition de cette inéquation est $]-13 ;-5[\cup]-4 ;+\infty[$. $(1) \Leftrightarrow\left(x^{2}+9 x+20<x+13\right) \Leftrightarrow\left(x^{2}+8 x+7<0\right)$.
Les racines du polynôme du second degré $x^{2}+8 x+7$ sont -1 et -7 donc $x^{2}+8 x+7<0$ si, et seulement si, $\left.x \in\right]-7 ;-1[$.
L'ensemble S des solutions de (1) est donc $S=]-7 ;-5[\cup]-4 ;-1$.

Exercice 20.

Solution

L'ensemble de définition de l'inéquation est $] 0 ; 1[\cup] 1 ;+\infty[$. On pose $X=\ln (x)$ l'inéquation (1) s'écrit $X-\frac{1}{X}>\frac{3}{2}$.
$\left(X-\frac{1}{X}>\frac{3}{2}\right) \Leftrightarrow\left(\frac{2 X^{2}-3 X-2}{2 X}>0\right)$. On étudie le polynôme $2 X^{2}-3 X-2$. Son discriminant est $\Delta=25$, ses racines sont 2 et $-\frac{1}{2}$.

X	$-\infty$	$-\frac{1}{2}$	0	2	$+\infty$			
$2 X$	-		-	0	+	\cdots	+	
$2 X^{2}-3 X-2$	+	0	-		-	0	+	
$X-\frac{1}{X}-\frac{3}{2}$	-	0	+		-	0	+	

Donc $\left(X-\frac{1}{X}>\frac{3}{2}\right) \Leftrightarrow(X \in]-\frac{1}{2} ; 0[\cup] 2 ;+\infty[)$. Comme $X=\ln (x)$.
$\left(\ln (x)-\frac{1}{\ln (x)}>\frac{3}{2}\right) \Leftrightarrow\left(-\frac{1}{2}<\ln (x)<0\right.$ ou $\left.2<\ln (x)\right)$.
$\left(\ln (x)-\frac{1}{\ln (x)}>\frac{3}{2}\right) \Leftrightarrow\left(\frac{1}{\sqrt{e}}<x<1\right.$ ou $\left.e^{2}<x\right)$.
$\left(\ln (x)-\frac{1}{\ln (x)}>\frac{3}{2}\right) \Leftrightarrow\left(x \in\left|\frac{1}{\sqrt{e}} ; 1[\cup] e^{2} ;+\infty\right|\right)$.
L'ensemble S des solutions de (1) est donc $S=\frac{1}{\sqrt{e}} ; 1[U] e^{2} ;+\infty$.

Exercice 21.**

Solution

L'expression $\left|\frac{x-3}{5 x+1}\right|$ doit être un réel strictement positif donc $x \neq-\frac{1}{5}$ et $x \neq 3$. L'ensemble de validité de l'équation (E) est donc $\mathbb{R}-\left\{-\frac{1}{5} ; 3\right\}$.

- Suppression des valeurs absolues.

x	$-\infty$	$-\frac{1}{5}$	3	$+\infty$
$\frac{x-3}{5 x+1}$	+	-	0	+
$\left.\ln \left(\left\lvert\, \frac{x-3}{5 x+1}\right.\right)\right)$	$\ln \left(\frac{x-3}{5 x+1}\right)$	$\ln \left(\frac{3-x}{5 x+1}\right)$	$\ln \left(\frac{x-3}{5 x+1}\right)$	

On en déduit :

- Résolution de (1) sachant que $x \in \mid-\infty ;-\frac{1}{5}[\bigcup] 3 ;+\infty[$.
- Si $x<-\frac{1}{5}$ alors $5 x+1<0$ donc:
(1) $\Leftrightarrow\left(\frac{x-3}{5 x+1} \geq 2\right) \Leftrightarrow(x-3 \leq 10 x+2) \Leftrightarrow(9 x \geq-5) \Leftrightarrow x \geq-\frac{5}{9}$.

On a : $-\frac{5}{9}<-\frac{1}{5}$ donc $x \in\left[-\frac{5}{9} ;-\frac{1}{5}\right]$.

- Si $x>3$ alors $5 x+1>0$ donc:
(1) $\Leftrightarrow\left(\frac{x-3}{5 x+1} \geq 2\right) \Leftrightarrow(x-3 \geq 10 x+2) \Leftrightarrow(9 x \leq-5) \Leftrightarrow x \leq-\frac{5}{9}$.

Ainsi, l'inéquation (1) n'a pas de solution' si $x>3$.
L'ensemble des solutions du système $\left\{\begin{array}{l}x \in]-\infty ;-\frac{1}{5}[\cup] 3 ;+\infty[\\ \ln \left(\frac{x-3}{5 x+1}\right)-\ln (2) \geq 0\end{array}\right.$ est donc $S_{1}=\left[-\frac{5}{9} ;-\frac{1}{5}\right]$.

- Résolution de l'inéquation (2) sachant que $x \in]-\frac{1}{5} ; 3[$. Si $x \in]-\frac{1}{5} ; 3[$ alors $5 x+1>0$ donc :
$(2) \Leftrightarrow\left(\frac{3-x}{5 x+1} \geq 2\right) \Leftrightarrow(3-x \geq 10 x+2) \Leftrightarrow(11 x \leq 1) \Leftrightarrow x \leq \frac{1}{11}$.
La solution du système $\left\{\begin{array}{l}x \in]-\frac{1}{5} ; 3[\\ \ln \left(\frac{3-x}{5 x+1}\right)-\ln (2) \geq 0\end{array}\right.$ est $S_{2}=\left[-\frac{1}{5} ; \frac{1}{11}\right]$.
- Solution de l'inéquation (E).

L'ensemble solution de l'inéquation (E) est $S=S_{1} \cup S_{2}$.

$$
S=\left[-\frac{5}{9} ;-\frac{1}{5}[\cup]-\frac{1}{5} ; \frac{1}{11}\right] .
$$

Résoudre un système d'équations
Exercice 22.

Donc $\left(X-\frac{1}{X}>\frac{3}{2}\right) \Leftrightarrow(X \in]-\frac{1}{2} ; 0[\cup] 2 ;+\infty[)$. Comme $X=\ln (x)$.
$\left(\ln (x)-\frac{1}{\ln (x)}>\frac{3}{2}\right) \Leftrightarrow\left(-\frac{1}{2}<\ln (x)<0\right.$ ou $\left.2<\ln (x)\right)$.
$\left(\ln (x)-\frac{1}{\ln (x)}>\frac{3}{2}\right) \Leftrightarrow\left(\frac{1}{\sqrt{e}}<x<1\right.$ ou $\left.e^{2}<x\right)$.
$\left(\ln (x)-\frac{1}{\ln (x)}>\frac{3}{2}\right) \Leftrightarrow\left(x \in\left|\frac{1}{\sqrt{e}} ; 1[\cup] e^{2} ;+\infty\right|\right)$.
L'ensemble S des solutions de (1) est donc $S=\frac{1}{\sqrt{e}} ; 1[U] e^{2} ;+\infty$.

Exercice 21.**

Solution

L'expression $\left|\frac{x-3}{5 x+1}\right|$ doit être un réel strictement positif donc $x \neq-\frac{1}{5}$ et $x \neq 3$. L'ensemble de validité de l'équation (E) est donc $\mathbb{R}-\left\{-\frac{1}{5} ; 3\right\}$.

- Suppression des valeurs absolues.

x	$-\infty$	$-\frac{1}{5}$	3	$+\infty$
$\frac{x-3}{5 x+1}$	+	-	0	+
$\ln \left(\left\lvert\, \frac{x-3}{5 x+1}\right.\right)$				

On en déduit :
$(E) \Leftrightarrow\left\{\begin{array}{l}{[x \in]-\infty ;-\frac{1}{5}[\cup] 3 ;+\infty[} \\ \ln \left(\frac{x-3}{5 x+1}\right)-\ln (2) \geq 0 \quad \text { (1) }\end{array}\right.$ ou $\left\{\begin{array}{l}x \in]-\frac{1}{5} ; 3[\\ \ln \left(\frac{3-x}{5 x+1}\right)-\ln (2) \geq 0\end{array}\right.$

- Résolution de (1) sachant que $x \in]-\infty ;-\frac{1}{5}[\cup] 3 ;+\infty[$.
- Si $x<-\frac{1}{5}$ alors $5 x+1<0$ donc:
(1) $\Leftrightarrow\left(\frac{x-3}{5 x+1} \geq 2\right) \Leftrightarrow(x-3 \leq 10 x+2) \Leftrightarrow(9 x \geq-5) \Leftrightarrow x \geq-\frac{5}{9}$.

On a : $-\frac{5}{9}<-\frac{1}{5}$ donc $x \in\left[-\frac{5}{9} ;-\frac{1}{5}[\right.$.

- Si $x>3$ alors $5 x+1>0$ donc:
(1) $\Leftrightarrow\left(\frac{x-3}{5 x+1} \geq 2\right) \Leftrightarrow(x-3 \geq 10 x+2) \Leftrightarrow(9 x \leq-5) \Leftrightarrow x \leq-\frac{5}{9}$.

Ainsi, l'inéquation (1) n'a pas de solution si $x>3$.
L'ensemble des solutions du système. $\left\{\begin{array}{l}x \in]-\infty ;-\frac{1}{5}[\cup] 3 ;+\infty[\\ \ln \left(\frac{x-3}{5 x+1}\right)-\ln (2) \geq 0\end{array}\right.$ est
donc $S_{1}=\left[-\frac{5}{9} ;-\frac{1}{5}\right]$.

- Résolution de l'inéquation (2) sachant que $x \in]-\frac{1}{5} ; 3[$.

Si $x \in]-\frac{1}{5} ; 3[$ alors $5 x+1>0$ donc:
$(2) \Leftrightarrow\left(\frac{3-x}{5 x+1} \geq 2\right) \Leftrightarrow(3-x \geq 10 x+2) \Leftrightarrow(11 x \leq 1) \Leftrightarrow x \leq \frac{1}{11}$.
La solution du système $\left\{\begin{array}{l}x \in]-\frac{1}{5} ; 3[\\ \ln \left(\frac{3-x}{5 x+1}\right)-\ln (2) \geq 0\end{array}\right.$ est $S_{2}=\left[-\frac{1}{5} ; \frac{1}{11}\right]$.

- Solution de l'inéquation (E).

L'ensemble solution de l'inéquation (E) est $S=S_{1} \cup S_{2}$.

$$
S=\left[-\frac{5}{9} ;-\frac{1}{5}[\cup]-\frac{1}{5} ; \frac{1}{11}\right] .
$$

\checkmark Résoudre un système d'équations
Exercice 22.

Exercice 25.

Solution

$$
(\Sigma) \Leftrightarrow\left(\{ \begin{array} { l }
{ x + y = 7 } \\
{ \operatorname { l n } (x y) = \operatorname { l n } (1 2) }
\end{array} \text { et } (x ; y) \in \mathbb { R } _ { + } ^ { * }) \Leftrightarrow \left(\left\{\begin{array}{ll}
x+y=7 & \text { et } \left.(x ; y) \in \mathbb{R}_{+}^{*}\right) \\
x y=12 & \text { et }
\end{array}\right)\right.\right.
$$

Les nombres x et y, de somme 7 et de produit 12 , sont les solutions de l'équation $u^{2}-7 u+12=0$. Le discriminant du trinôme est $\Delta=7^{2}-4 \times 12=1$ et ses racines sont : $u_{1}=3$ et $u_{2}=4$. Ces deux solutions sont strictement positives donc l'ensemble des solutions du système (Σ) est $S=\{(3 ; 4) ;(4 ; 3)\}$.

Exercice 26.

Solution

L'ensemble de définition du système est $] 0 ;+\infty[\times] 0 ;+\infty[$.
$(\Sigma) \Leftrightarrow\left(\left\{\begin{array}{l}{\left[\begin{array}{l}\frac{x^{2}}{y^{3}}=e^{9} \\ x y^{5}=e^{-\frac{17}{2}}\end{array}\right) \Leftrightarrow\left(\left\{\begin{array}{l}x=y^{-5} e^{-\frac{17}{2}} \\ \left(\frac{y^{-5} e^{-\frac{17}{2}}}{y^{3}}\right.\end{array}\right) \Leftrightarrow e^{9}\right.}\end{array}\right) \Leftrightarrow\binom{x=y^{-5} e^{-\frac{17}{2}}}{y^{-13} e^{-17}=e^{9}}\right.$.
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}x=y^{-5} e^{-\frac{17}{2}} \\ y^{-13}=e^{26}\end{array} \Leftrightarrow\left\{\begin{array}{l}x=y^{-5} e^{-\frac{17}{2}} \\ y=e^{-2}\end{array} \Leftrightarrow\left\{\begin{array}{l}x=e^{10} e^{-\frac{17}{2}} \\ y=e^{-2}\end{array} \Leftrightarrow\left\{\begin{array}{l}x=e^{\frac{3}{2}} \\ y=e^{-2}\end{array}\right.\right.\right.\right.$.
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}x=e \sqrt{e} \\ y=\frac{1}{e^{2}}\end{array}\right.$.
L'ensemble des solutions du système (Σ) est $S=\left\{\left(e \sqrt{e} ; \frac{1}{e^{2}}\right)\right\}$.

Exercice 27.

Solution

$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}e^{x}=\frac{2}{3} e^{y} \\ \frac{2}{3} e^{y} e^{y}=6\end{array} \Leftrightarrow\left\{\begin{array}{l}e^{x}=\frac{2}{3} e^{y} \\ e^{2 y}=9\end{array} \Leftrightarrow\left\{\begin{array}{l}e^{x}=2 \\ e^{y}=3\end{array} \Leftrightarrow\left\{\begin{array}{l}x=\ln (2) . \\ y=\ln (3) .\end{array}\right.\right.\right.\right.$
L'ensemble des solutions du système (Σ) est $S=\{(\ln (2) ; \ln (3))\}$.

Exercice 28.

Solution

L'ensemble de définition du système est :

$$
\left\{(x, y) \in \mathbb{R}^{2}, x<\frac{2}{5} \text { et } 3 x+4 y>0\right\}
$$

$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}\ln \left(\frac{3 x+4 y}{7}\right)=\ln [5(2-5 x)] \\ e^{x+y+1}=1\end{array}\right.$ et $[(3 x+4 y>0)$ et $5(2-5 x>0)]$.
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}\frac{3 x+4 y}{7}=10-25 x \\ x+y+1=0\end{array}\right.$ et $[(3 x+4 y>0)$ et $(2-5 x>0)]$.
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}178 x+4 y=70 \\ x+y=-1\end{array}\right.$ et $[(3 x+4 y>0)$ et $(2-5 x>0)]$.
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}178 x+4 y=70 \\ y=-1-x\end{array}\right.$ et $[(3 x+4 y>0)$ et $(2-5 x>0)]$.
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}174 x=74 \\ y=-1-x\end{array}\right.$ et $[(3 x+4 y>0)$ et $(2-5 x>0)]$.
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}x=\frac{37}{87} \\ y=-\frac{124}{87}\end{array}\right.$ et $[(3 x+4 y>0)$ et $(2-5 x>0)]$.

Comme $3 \times \frac{37}{87}+4 \times\left(-\frac{124}{87}\right)=-\frac{385}{87}:<0$ le système (Σ) n'admet pas de solution. L'ensemble des solutions est donc vide $S=\varnothing$.

Exercice 29.

Solution

$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}2 e^{x}+5 e^{y}=16 \\ 3 e^{x}+3 e^{y}=15\end{array} \Leftrightarrow\left\{\begin{array}{l}2 e^{x}+5 e^{y}=16 \\ e^{x}+e^{y}=5\end{array} \Leftrightarrow\left\{\begin{array}{l}2 e^{x}+5 e^{y}=16 \\ e^{y}=5-e^{x}\end{array}\right.\right.\right.$
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}2 e^{x}+5\left(5-e^{x}\right)=16 \\ e^{y}=5-e^{x}\end{array} \Leftrightarrow\left\{\begin{array}{l}-3 e^{x}=-9 \\ e^{y}=5-e^{x}\end{array} \Leftrightarrow\left\{\begin{array}{l}e^{x}=3 \\ e^{y}=2\end{array} \Leftrightarrow\left[\begin{array}{l}x=\ln (3) \\ y=\ln (2)\end{array}\right.\right.\right.\right.$.
L'ensemble des solutions du système (Σ) est $S=\{(\ln (3) ; \ln (2))\}$.
Exercice 30.

Solution

Si x et y sont solutions du système (Σ) alors par différence $2 e^{x}=-3$. Or, pour tout réel $x, 2 e^{x}>0$ donc le système (Σ) n'admet pas de solution. L'ensemble des solutions est donc vide : $S=\varnothing$.

Exercice 31.

Solution

L'ensemble de définition du système est $] 0 ;+\infty[\times] 0,+\infty[$.
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}\ln (x)=1-\ln (y) \\ \ln ^{2}(y)+(1-\ln (y))^{2}=\frac{5}{2}\end{array} \Leftrightarrow\left\{\begin{array}{l}\ln (x)=1-\ln (y) \\ 2 \ln ^{2}(y)-2 \ln (y)+1=\frac{5}{2}\end{array}\right.\right.$
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}\ln (x)=1-\ln (y) \\ \ln ^{2}(y)-\ln (y)-\frac{3}{4}=0\end{array}\right.$

L'équation (2) nous conduit à la résolution de l'équation :
$u^{2}-u-\frac{3}{4}=0$. Son discriminant est $\Delta=4$ et ses racines sont :
$u_{1}=\frac{1-2}{2}=-\frac{1}{2}$ et $u_{2}=\frac{1+2}{2}=\frac{3}{2}$.
(2) $\Leftrightarrow\left(\ln (y)=-\frac{1}{2}\right.$ ou $\left.\ln (y)=\frac{3}{2}\right) \Leftrightarrow\left(y=e^{-\frac{1}{2}}\right.$ ou $\left.y=e^{\frac{3}{2}}\right)$.
(2) $\Leftrightarrow\left(y=\frac{1}{\sqrt{e}}\right.$ ou $\left.y=e \sqrt{e}\right)$. On a alors :
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}\ln (x)=1-\ln (y) \\ y=\frac{1}{\sqrt{e}} \text { ou } y=e \sqrt{e}\end{array} \Leftrightarrow\left(\left\{\begin{array}{l}\ln (x)=1-\ln (y) \\ y=\frac{1}{\sqrt{e}}\end{array}\right.\right.\right.$ ou $\left\{\begin{array}{l}\ln (x)=1-\ln (y) \\ y=e \sqrt{e}\end{array}\right)$

$(\Sigma) \Leftrightarrow\left(\left\{\begin{array}{l}x=e \sqrt{e} \\ y=\frac{1}{\sqrt{e}}\end{array}\right.\right.$ ou $\left\{\begin{array}{l}x=\frac{1}{\sqrt{e}} \\ y=e \sqrt{e}\end{array}\right)$.
L'ensemble des solutions du système (Σ) est:

$$
S=\left\{\left(e \sqrt{e} ; \frac{1}{\sqrt{e}}\right) ;\left(\frac{1}{\sqrt{e}} ; e \sqrt{e}\right)\right\} .
$$

Exercice 32.**

Solution
$x \in] 0 ; 1[\cup] 1 ;+\infty[$ et $y \in] 0 ; 1[\cup] 1 ;+\infty[$.
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}x=\frac{e}{y} \\ \frac{\ln (x)}{\ln (y)}+\frac{\ln (y)}{\ln (x)}=\frac{5}{2}\end{array} \Leftrightarrow\left\{\begin{array}{l}x=\frac{e}{y} \\ \frac{1-\ln (y)}{\ln (y)}+\frac{\ln (y)}{1-\ln (y)}=\frac{5}{2}\end{array}\right.\right.$
$(y \neq e \operatorname{car} x \neq 1)$.
$(\Sigma) \Leftrightarrow\left\{\begin{array}{l}x=\frac{e}{y} \\ \frac{\ln (y)}{1-\ln (y)}+\frac{1}{\frac{\ln (y)}{1-\ln (y)}}=\frac{5}{2}\end{array}\right.$
(2). En posant $u=\frac{\ln (y)}{1-\ln (y)}$, on est
conduit à résoudre $u^{2}-\frac{5}{2} u+1=0$. Son discriminant est $\Delta=\frac{9}{4}$ et ses racines sont : $u_{1}=\frac{\frac{5}{2}-\frac{3}{2}}{2}=\frac{1}{2}$ et $u_{2}=\frac{\frac{5}{2}+\frac{3}{2}}{2}=2$.
$\left(\frac{\ln (y)}{1-\ln (y)}=\frac{1}{2}\right) \Leftrightarrow\left(\frac{3}{2} \ln (y)=\frac{1}{2}\right) \Leftrightarrow\left(\ln (y)=\frac{1}{3}\right) \Leftrightarrow\left(y=e^{\frac{1}{3}}\right)$.
$\left(\frac{\ln (y)}{1-\ln (y)}=2\right) \Leftrightarrow(3 \ln (y)=2) \Leftrightarrow\left(\ln (y)=\frac{2}{3}\right) \Leftrightarrow\left(y=e^{\frac{2}{3}}\right)$.
$(\Sigma) \Leftrightarrow\left\{\begin{array}{ll}x=\frac{e}{y} & \\ y=e^{\frac{1}{3}} & \text { ou }\end{array} \quad y=e^{\frac{2}{3}} . \Leftrightarrow\left(\left\{\begin{array}{l}x=\frac{e}{y} \\ y=e^{\frac{1}{3}}\end{array}\right.\right.\right.$ ou $\left\{\begin{array}{l}x=\frac{e}{y} \\ y=e^{\frac{2}{3}}\end{array}\right)$.
$(\Sigma) \Leftrightarrow\left(\left\{\begin{array}{l}x=e \times e^{-\frac{1}{3}} \\ y=e^{\frac{1}{3}}\end{array}\right.\right.$. ou $\left\{\begin{array}{l}x=e \times e^{-\frac{2}{3}} \\ y=e^{\frac{2}{3}}\end{array}\right) \Leftrightarrow\left(\left\{\begin{array}{l}x=e^{\frac{2}{3}} \\ y=e^{\frac{1}{3}}\end{array}\right.\right.$ ou $\left\{\begin{array}{l}x=e^{\frac{1}{3}} \\ y=e^{\frac{2}{3}}\end{array}\right)$.
L'ensemble des solutions du système (Σ) est $S=\left\{\left(e^{\frac{2}{3}} ; e^{\frac{1}{3}}\right) ;\left(e^{\frac{1}{3}} ; e^{\frac{2}{3}}\right)\right\}$.

II. Limites

\checkmark Limites du cours

Exercice 33.

Solution

1. La fonction f est dérivable sur \mathbb{R}_{+}^{*} et on a:
$f^{\prime}(x)=\frac{1}{\sqrt{x}}-\frac{1}{x}=\frac{\sqrt{x}-1}{x} .\left(f^{\prime}(x)=0\right) \Leftrightarrow(x=1)$.
Si $x>1$ alors $f^{\prime}(x)>0$ donc f est strictement croissante sur $[1 ;+\infty[$.
Si $0<x<1$ alors $f^{\prime}(x)<0$ donc f est strictement décroissante sur $\mid 0 ; 1]$. On en déduit que f admet un minimum en $x=1$ et $f(1)=2$.
2. Donc, pour tout réel x de \mathbb{R}_{+}^{*}, on a $f(x)>0$, c'est-à-dire $\ln (x)<2 \sqrt{x}$. Si $x \geq 1$ alors $0 \leq \ln (x) \leq 2 \sqrt{x}$.
3. On en déduit que si $x \geq 1$ alors $0 \leq \frac{\ln (x)}{x} \leq \frac{2}{\sqrt{x}} . \lim _{x \rightarrow+\infty} \frac{2}{\sqrt{x}}=0$ donc, d'après le théorème des gendarmes, on a: $\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x}=0$.

Exercice 34.

Solution

- Pour $x>0$, on a $x \ln (x)=-\frac{\ln \left(\frac{1}{x}\right)}{\frac{1}{x}}$.
$\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty$ et $\lim _{X \rightarrow+\infty} \frac{\ln (X)}{X}=0$ donc $\lim _{x \rightarrow 0} \frac{\ln \left(\frac{1}{x}\right)}{\frac{1}{x}}=0$ (d'après le théorème sur la limite d'une fonction composée). $\lim _{x \rightarrow 0} x \ln (x)=0$. - On pose, pour $x \in]-1 ;+\infty[, f(x)=\ln (1+x)$. La fonction f est dérivable sur $]-1 ;+\infty\left[\right.$ et $f^{\prime}(x)=\frac{1}{1+x}$. De plus, $f(0)=\ln (1)=0$ donc $\frac{\ln (1+x)}{x}=\frac{f(x)-f(0)}{x}$. C'est donc le taux d'accroissement de la fonction f en 0 . Comme f est dérivable en 0 , on a $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=f^{\prime}(0)=1$.
- $\lim _{x \rightarrow 1}(x-1)=0$ et $\lim _{X \rightarrow 0} \frac{\ln (1+X)}{X}=1$ donc $\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1}=1$.

\checkmark Polynômes, fonctions rationnelles, quotients

Exercice 35.

Soit $f(x)=\ln (x)=x$. Deterniner la limite de f en $+\infty$

Solution

Pour tout $x>0$, on a $f(x)=\ln (x)-x=x\left(\frac{\ln (x)}{x}-1\right)$.
Comme $\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x}=0$, on a $\lim _{x \rightarrow+\infty}\left(\frac{\ln (x)}{x}-1\right)=-1$ d'où
$\lim _{x \rightarrow+\infty} x\left(\frac{\ln (x)}{x}-1\right)=-\infty$ et $\lim _{x \rightarrow+\infty} f(x)=-\infty$.

Exercice 36.*

Solution

$$
\begin{aligned}
& (x-2) \ln \left(\frac{x+1}{x^{2}-4 x+4}\right)=(x-2) \ln \left(\frac{x+1}{(x-2)^{2}}\right) \\
& (x-2) \ln \left(\frac{x+1}{x^{2}-4 x+4}\right)=(x-2)\left[\ln (x+1)-\ln \left[(x-2)^{2}\right]\right] \\
& (x-2) \ln \left(\frac{x+1}{x^{2}-4 x+4}\right)=(x-2) \ln (x+1)-2(x-2) \ln (x-2) .
\end{aligned}
$$

$$
\lim _{x \rightarrow 2}(x-2)=0 \text { et } \lim _{X \rightarrow 0} X \ln (X)=0 \text { donc } \lim _{x \rightarrow 2}(x-2) \ln (x-2)=0
$$

Comme $\lim _{x \rightarrow 2} \ln (x+1)=\ln (3)$, car la fonction \ln est continue en 2 , on a
$\lim _{x \rightarrow 2}(x-2) \ln (x+3)=0$. Finalement, $\lim _{x \rightarrow 2}(x-2) \ln \left(\frac{x+1}{x^{2}-4 x+4}\right)=0$.

Exercice 37.

Solution

L'ensemble de définition de f est $\left.E_{f}=\right] 0 ;+\infty[$.
Pour tout $x \in \mathbb{R}_{+}^{*}$, on a :
$f(x)=x+\ln (x+1)-\ln (x)=x+\ln \left(x\left(1+\frac{1}{x}\right)\right)-\ln (x)$.
$f(x)=x+\ln (x)+\ln \left(1+\frac{1}{x}\right)-\ln (x)=x+\ln \left(1+\frac{1}{x}\right)$.

- Limite en $0: \lim _{x \rightarrow 0^{+}}\left(1+\frac{1}{x}\right)=+\infty$ et $\lim _{X \rightarrow+\infty} \ln (X)=+\infty$ donc $\lim _{x \rightarrow 0^{+}} \ln \left(1+\frac{1}{x}\right)=+\infty$. On obtient $\lim _{x \rightarrow 0} f(x)=+\infty$.
- Limite en $+\infty: \lim _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right)=1$ et $\lim _{X \rightarrow 1} \ln (X)=\ln (1)=0$ donc $\lim _{x \rightarrow+\infty} \ln \left(1+\frac{1}{x}\right)=0$. Ainsi, $\lim _{x \rightarrow+\infty}\left[x+\ln \left(1+\frac{1}{x}\right)\right]=+\infty$ donc

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty .
$$

Exercice 38.

Solution

La fonction f est définie pour tout réel x vérifiant $\frac{x-1}{2 x+3}>0$.
L'ensemble de définition est

$$
\left.\left.E_{f}=\right]-\infty ;-\frac{3}{2}[\cup] 1 ;+\infty\right] .
$$

Pour tout réel x appartenant à E_{f}, on pose $u(x)=\frac{x-1}{2 x+3}$.
$u(x)=\frac{x-1}{2 x+3}=\frac{1-\frac{1}{x}}{2+\frac{3}{x}}$ donc $\lim _{x \rightarrow-\infty} u(x)=\lim _{x \rightarrow+\infty} u(x)=\frac{1}{2}$.
$\lim _{x \rightarrow-\frac{3^{-}}{2}}(x-1)=-\frac{5}{2}$ et $\lim _{x \rightarrow-\frac{3^{-}}{2}}(2 x+3)=0^{-}$donc $\lim _{x \rightarrow-\frac{3^{-}}{2}} u(x)=+\infty$.
$\lim _{x \rightarrow 1^{+}}(x-1)=0^{+}$et $\lim _{x \rightarrow 1}(2 x+3)=5$ donc $\lim _{x \rightarrow 1^{+}} u(x)=0^{+}$.

- Limite en $-\infty: \lim _{x \rightarrow-\infty} u(x)=\frac{1}{2}$ et $\lim _{X \rightarrow \frac{1}{2}} \ln (X)=\ln \left(\frac{1}{2}\right)$ donc
$\lim _{x \rightarrow-\infty} \ln \left(\frac{x-1}{2 x+3}\right)=\ln \left(\frac{1}{2}\right)$. Ainsi, $\lim _{x \rightarrow-\infty}\left[x+\ln \left(\frac{x-1}{2 x+3}\right)\right]=-\infty$ donc

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty .
$$

- Limite en $-\frac{3^{-}}{2}$: $\lim _{x \rightarrow-\frac{3^{-}}{2}} u(x)=+\infty$ et $\lim _{X \rightarrow+\infty} \ln (X)=+\infty$ d'où $\lim _{x \rightarrow-\frac{3^{-}}{2}} \ln \left(\frac{x-1}{2 x+3}\right)=+\infty$. Ainsi, $\lim _{x \rightarrow-\frac{3^{-}}{2}}\left[x+\ln \left(\frac{x-1}{2 x+3}\right)\right]=+\infty$ donc

$$
\lim _{x \rightarrow-\frac{3^{-}}{2}} f(x)=+\infty \text {. }
$$

- Limite en $1^{+}: \lim _{x \rightarrow 1^{+}} u(x)=0^{+}$et $\lim _{X \rightarrow 0^{+}} \ln (X)=-\infty \quad$ donc $\lim _{x \rightarrow 1^{+}} \ln \left(\frac{x-1}{2 x+3}\right)=-\infty$. Ainsi, $\lim _{x \rightarrow 1^{+}}\left[x+\ln \left(\frac{x-1}{2 x+3}\right)\right]=-\infty$ donc

$$
\lim _{x \rightarrow 1^{+}} f(x)=-\infty \text {. }
$$

- Limite en $+\infty: \lim _{x \rightarrow+\infty} \frac{x-1}{2 x+3}=\frac{1}{2}$ et $\lim _{X \rightarrow \frac{1}{2}} \ln (X)=\ln \left(\frac{1}{2}\right)$ donc

$$
\lim _{x \rightarrow+\infty} \ln \left(\frac{x-1}{2 x+3}\right)=\ln \left(\frac{1}{2}\right) . \text { Ainsi, } \lim _{x \rightarrow+\infty}\left[x+\ln \left(\frac{x-1}{2 x+3}\right)\right]=+\infty \text { donc }
$$

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty \text {. }
$$

Exercice 39.

Solution

La fonction f est définie pour tout réel x vérifiant $\frac{x^{2}+3 x+2}{x^{2}-x+1}>0$.
Le discriminant du polynôme $x^{2}-x+1$ est $\Delta=-3<0$.
Pour tout réel $x, x^{2}-x+1>0$.
Les racines du polynôme $x^{2}+3 x+2$ sont -1 et -2 .
$\left(x^{2}+3 x+2>0\right) \Leftrightarrow(x \in]-\infty ;-2[\cup]-1 ;+\infty[)$.
$\left(\frac{x^{2}+3 x+2}{x^{2}-x+1}>0\right) \Leftrightarrow(x \in]-\infty ;-2[\cup]-1 ;+\infty[)$.
Finalement, $E_{f}=[-\infty ;-2[\cup]-1 ;+\infty$.

Pour tout réel x de E_{f}, on pose $u(x)=\frac{x^{2}+3 x+2}{x^{2}-x+1}$. Ainsi, $f=\ln \circ u$.
De plus, pour tout réel non nul $x, u(x)=\frac{1+\frac{3}{x}+\frac{2}{x^{2}}}{1-\frac{1}{x}+\frac{1}{x^{2}}}$.
$\lim _{x \rightarrow-\infty} u(x)=\lim _{x \rightarrow+\infty} u(x)=1$.
$\lim _{x \rightarrow-2^{-}}\left(x^{2}+3 x+2\right)=0^{+}$et $\lim _{x \rightarrow-2}\left(x^{2}-x+1\right)=7$ donc $\lim _{x \rightarrow-2^{-}} u(x)=0^{+}$.
$\lim _{x \rightarrow-1^{+}}\left(x^{2}+3 x+2\right)=0^{+}$et $\lim _{x \rightarrow-1}\left(x^{2}-x+1\right)=3$ donc $\lim _{x \rightarrow-1^{+}} u(x)=0^{+}$.

- Limite en $+\infty$ et en $-\infty: \lim _{x \rightarrow-\infty} u(x)=\lim _{x \rightarrow+\infty} u(x)=1$ et $\lim _{X \rightarrow 1} \ln (X)=\ln (1)=0$ donc d'après le théorème sur la limite d'une fonction composée, on a : $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow+\infty} f(x)=0$.
- Limites en -2 et en $-1: \lim _{x \rightarrow-2^{-}} u(x)=\lim _{x \rightarrow-1^{+}} u(x)=0^{+}$. et $\lim _{X \rightarrow 0^{+}} \ln (X)=-\infty$ donc d'après le théorème sur la limite d'une fonction composée, on a : $\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=-\infty$.

Exercice 40.

Solution

Pour tout $x>0$, on a $\ln (2 x+3)=\ln \left[x\left(2+\frac{3}{x}\right)\right]=\ln (x)+\ln \left(2+\frac{3}{x}\right)$.
Donc, $f(x)=\frac{\ln (2 x+3)}{\ln (x)}=1+\frac{\ln \left(2+\frac{3}{x}\right)}{\ln (x)}$.
On utilise le théorème sur la limite d'une fonction composée.
$\lim _{x \rightarrow+\infty}\left(2+\frac{3}{x}\right)=2$ et $\lim _{X \rightarrow 2} \ln (X)=\ln (2)$ donc $\lim _{x \rightarrow+\infty} \ln \left(2+\frac{3}{x}\right)=\ln (2)$.
$\lim _{x \rightarrow+\infty} \ln (x)=+\infty$ et $\lim _{X \rightarrow+\infty} \frac{1}{X}=0$ donc $\lim _{x \rightarrow+\infty} \frac{1}{\ln (x)}=0$.
Comme $\lim _{x \rightarrow+\infty} \ln \left(2+\frac{3}{x}\right)=\ln (2)$ et $\lim _{x \rightarrow+\infty} \frac{1}{\ln (x)}=0$, on a :

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} \ln \left(2+\frac{3}{x}\right) \times \frac{1}{\ln (x)}=0 \text { donc } \lim _{x \rightarrow+\infty}\left[1+\frac{\ln \left(2+\frac{3}{x}\right)}{\ln (x)}\right]=1 \text { et } \\
\lim _{x \rightarrow+\infty} f(x)=1 .
\end{gathered}
$$

\checkmark Limites avec des racines carrées

Exercice 41.

Soit f la fonction iefinie pat $f(x)=(3 x-5) \operatorname{ma}(\sqrt{3 x}+x-10$
Denner Ilensemble de defintiun de f puls determinet la limite de f at $\frac{3}{3}$

Solution

On peut remarquer que $3 x^{2}+x-10=(3 x-5)(x+2)$ donc l'ensemble de définition de f est $\left.E_{f^{\prime}}=\right]-\infty ;-2\left[\cup \frac{5}{3} ;+\infty\right.$.
Pour $x>\frac{5}{3}$, on a : $f(x)=\frac{1}{2}(3 x-5) \ln [(3 x-5)(x+2)]$.
$f(x)=\frac{1}{2}(3 x-5) \ln (3 x-5)+\frac{1}{2}(3 x-5) \ln (x+2)$.
$\lim _{x \rightarrow 5^{+}}^{3}(3 x-5)=0^{+}$et $\lim _{X \rightarrow 0^{+}} X \ln (X)=0$ donc
$\lim _{x \rightarrow \frac{5^{+}}{3}}(3 x-5) \ln (3 x-5)=0$. La fonction $x \mapsto \ln (x+2)$ est continue en $\frac{5}{3}$ donc $\lim _{x \rightarrow \frac{5}{3}} \ln (x+2)=\ln \left(\frac{11}{3}\right)$.
$\lim _{x \rightarrow \frac{5}{3}}(3 x-5)=0$ donc $\quad \lim _{x \rightarrow \frac{5}{3}}[(3 x-5) \ln (3 x+5)]=0$. En conclusion, $\lim _{x \rightarrow 5^{+}}[(3 x-5) \ln (3 x-5)+(3 x-5) \ln (x+2)]=0$, d'où $\lim _{x \rightarrow \frac{5^{+}}{3}} f(x)=0$.

Exercice 42.

Solution

Pour $x>\frac{1}{2}$, on a :
$f(x)=\frac{\ln (2 x-1)}{\sqrt{x}}=\frac{\ln \left[x\left(2-\frac{1}{x}\right)\right]}{\sqrt{x}}=2 \times \frac{\ln (\sqrt{x})}{\sqrt{x}}+\frac{\ln \left(2-\frac{1}{x}\right)}{\sqrt{x}}$.
$\lim _{x \rightarrow+\infty} \sqrt{x}=+\infty$ et $\lim _{X \rightarrow+\infty} \frac{\ln (X)}{X}=0$ donc $\lim _{x \rightarrow+\infty} \frac{\ln (\sqrt{x})}{\sqrt{x}}=0$.
D'autre part, $\lim _{x \rightarrow+\infty}\left(2-\frac{1}{x}\right)=2$, donc $\lim _{x \rightarrow+\infty} \frac{\ln \left(2-\frac{1}{x}\right)}{\sqrt{x}}=0$.
En conclusion : $\lim _{x \rightarrow+\infty} \frac{\ln (2 x-1)}{\sqrt{x}}=0$.

Exercice 43 *

Soit $f(x)=\ln ^{3}(x)=\sqrt{x}$. Determiner la limite de f en

Solution

Pour $x>0$, on pose $u=\sqrt{x}$.
$f(x)=\ln ^{5}(x)-\sqrt{x}=\ln ^{5}\left(u^{2}\right)-u=u\left[2^{5} \times \frac{\ln ^{5}(u)}{u}-1\right]$.
On a $\frac{\ln ^{5}(u)}{u}=\frac{\ln ^{5}\left(u^{\frac{5}{5}}\right)}{u^{\frac{5}{5}}}=\left[\frac{\ln \left(u^{\frac{5}{5}}\right)}{u^{\frac{1}{5}}}\right]^{5}=5^{5}\left(\frac{\ln \left(u^{\frac{1}{5}}\right)}{u^{\frac{1}{5}}}\right]^{5}$.
$u^{\frac{1}{5}}=e^{\frac{1}{5} \ln (u)}$.
$\lim _{u \rightarrow+\infty} \frac{1}{5} \ln (u)=+\infty$ et $\lim _{X \rightarrow+\infty} e^{X}=+\infty$ donc $\lim _{u \rightarrow+\infty} e^{\frac{1}{5} \ln (u)}=+\infty$.
$\lim _{u \rightarrow+\infty} u^{\frac{1}{5}}=+\infty$ et $\lim _{X \rightarrow+\infty} \frac{\ln (X)}{X}=0$ donc $\lim _{u \rightarrow+\infty} \frac{\ln \left(u^{\frac{1}{5}}\right)}{u^{\frac{1}{5}}}=0$.
$\lim _{u \rightarrow+\infty} \frac{\ln \left(u^{\frac{1}{5}}\right)}{u^{\frac{1}{5}}}=0$ et $\lim _{X \rightarrow 0} X^{5}=0$ donc $\lim _{u \rightarrow+\infty}\left[\frac{\ln \left(u^{\frac{1}{5}}\right)}{u^{\frac{1}{5}}}\right]^{5}=0$.

On en déduit $\lim _{u \rightarrow+\infty} \frac{\ln ^{5}(u)}{u}=0$, donc $\lim _{u \rightarrow+\infty}\left[2^{5} \times \frac{\ln ^{5}(u)}{u}-1\right]=-1$ et $\lim _{u \rightarrow+\infty} u \times\left[\frac{\ln ^{5}\left(u^{2}\right)}{u}-1\right]=-\infty$.
$\lim _{x \rightarrow+\infty} \sqrt{x}=+\infty$ et $\lim _{u \rightarrow+\infty} u \times\left[\frac{\ln ^{5}\left(u^{2}\right)}{u}-1\right]=-\infty$.
$\lim _{x \rightarrow+\infty} \sqrt{x} \times\left[\frac{\ln ^{5}(x)}{\sqrt{x}}-1\right]=-\infty$ et $\lim _{x \rightarrow+\infty}\left[\ln ^{5}(x)-\sqrt{x}\right]=-\infty$.

$$
\lim _{x \rightarrow+\infty} f(x)=-\infty .
$$

Remarque: On peut aller plus vite en utilisant les théorèmes sur la comparaison des croissances des fonctions puissances et logarithme.

Exercice 44.

Solution

Pour $x>0$, on a :

$$
f(x)=\frac{\ln (1+5 x)}{\sqrt{x}}=\frac{5 x}{\sqrt{x}} \times \frac{\ln (1+5 x)}{5 x}=5 \sqrt{x} \times \frac{\ln (1+5 x)}{5 x} .
$$

$$
\lim _{x \rightarrow 0} 5 x=0 \text { et } \lim _{X \rightarrow 0} \frac{\ln (1+X)}{X}=1 \text { (limite du cours) }
$$

$$
\lim _{x \rightarrow 0} \frac{\ln (1+5 x)}{5 x}=1
$$

Comme $\lim _{x \rightarrow 0^{+}} 5 \sqrt{x}=0$, on a $\lim _{x \rightarrow 0^{+}} 5 \sqrt{x} \times \frac{\ln (1+5 x)}{5 x}=0$.
En conclusion, $\lim _{x \rightarrow 0^{+}} f(x)=0$.
Exercice 45.

Soit $f(x)=\sqrt{x} \ln ^{2}(x)$. Determiner la himite.de fen 0

Solution

On pose $u=\sqrt{x}$.

$$
\begin{aligned}
& f(x)=\sqrt{x} \ln ^{2}(x)=u \ln ^{2}\left(u^{2}\right)=u(2 \ln (u))^{2} . \\
& f(x)=u(4 \ln (\sqrt{u}))^{2}=(4 \sqrt{u} \ln (\sqrt{u}))^{2} .
\end{aligned}
$$

$\lim _{u \rightarrow 0} \sqrt{u}=0$ et $\lim _{X \rightarrow 0} X \ln (X)=0$ donc $\lim _{u \rightarrow 0} \sqrt{u} \ln (\sqrt{u})=0$.
$\lim _{u \rightarrow 0} \sqrt{u} \ln (\sqrt{u})=0$ et $\lim _{X \rightarrow 0}(4 X)^{2}=0$ donc $\lim _{u \rightarrow 0}(4 \sqrt{u} \ln (\sqrt{u}))^{2}=0$.
$\lim _{x \rightarrow 0} \sqrt{x}=0$ et $\lim _{u \rightarrow 0} u \ln ^{2}\left(u^{2}\right)=0$ donc $\lim _{x \rightarrow 0} \sqrt{x} \ln ^{2}(x)=0$.

\checkmark Fonctions trigonométriques

Exercice 46.

Soit $f(x)=\frac{\cos (\ln (x))}{x}$. Déterminer la limite de f en $t \infty$

Solution

Pour tout $x>0$, on a $-1 \leq \cos (\ln (x)) \leq 1$ et $\frac{-1}{x} \leq \frac{\cos (\ln (x))}{x} \leq \frac{1}{x}$.
$\lim _{x \rightarrow+\infty} \frac{1}{x}=0$ et $\lim _{x \rightarrow+\infty}-\frac{1}{x}=0$ donc, en utilisant le théorème des gendarmes, il vient $\lim _{x \rightarrow+\infty} \frac{\cos (\ln (x))}{x}=0 . \lim _{x \rightarrow+\infty} f(x)=0$.

Exercice $477^{* *}$

Solution

Pour tout x appartenant à $\mid \rho, \frac{\pi}{2}[$,
$f(x)=\ln (\cos (x)) \times \ln (x)=\ln \left(1-2 \sin ^{2}\left(\frac{x}{2}\right)\right) \times \ln (x)$.
$f(x)=\frac{\ln \left(1-2 \sin ^{2}\left(\frac{x}{2}\right)\right)}{2 \sin ^{2}\left(\frac{x}{2}\right)} \times 2 \sin ^{2}\left(\frac{x}{2}\right) \times \ln (x)$.
$f(x)=-\frac{\ln \left(1-2 \sin ^{2}\left(\frac{x}{2}\right)\right)}{-2 \sin ^{2}\left(\frac{x}{2}\right)} \times \sin \left(\frac{x}{2}\right) \times \frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}} \times(-x \ln (x))$.
On utilise le théorème sur la limite d'une fonction composée.
On a: $\lim _{x \rightarrow 0} \sin \left(\frac{x}{2}\right)=0$ et $\lim _{X \rightarrow 0} X^{2}=0$ donc $\lim _{x \rightarrow 0} \sin ^{2}\left(\frac{x}{2}\right)=0$.
$\lim _{x \rightarrow 0}-2 \sin ^{2}\left(\frac{x}{2}\right)=0$ et $\lim _{X \rightarrow 0} \frac{\ln (1+X)}{X}=1$ donc $\lim _{x \rightarrow 0} \frac{\ln \left(1-2 \sin ^{2}\left(\frac{x}{2}\right)\right)}{-2 \sin ^{2}\left(\frac{x}{2}\right)}=1$ $\lim _{x \rightarrow 0}\left(\frac{x}{2}\right)=0$ et $\lim _{X \rightarrow 0} \frac{\sin (X)}{X}=\cos (0)=1$ donc, d'après le théorème sur la limite d'une fonction composée, on a $\lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{2}\right)}{-\frac{x}{2}}=1$.
En utilisant $\lim _{x \rightarrow 0^{+}} x \ln (x)=0$ (limite du cours), on obtient :
$\lim _{x \rightarrow 0^{+}}\left[-\frac{\ln \left(1-2 \sin ^{2}\left(\frac{x}{2}\right)\right)}{-2 \sin ^{2}\left(\frac{x}{2}\right)} \times \sin \left(\frac{x}{2}\right) \times \frac{\sin \left(\frac{x}{2}\right)}{\frac{x}{2}} \times x \cdot \ln (x)\right]=0$.

$$
\lim _{x \rightarrow 0^{+}} f(x)=0 \text {. }
$$

III. La continuité

Exercice 48.

Solution

- Continuité en $x \neq 0$: la fonction $x \mapsto 1+x^{2}$ est continue sur \mathbb{R} et est strictement positive, la fonction \ln est continue sur \mathbb{R}_{+}^{*}, donc la fonction $x \mapsto \ln \left(1+x^{2}\right)$ est continue sur \mathbb{R}. La fonction $x \mapsto \frac{1}{x}$ est continue sur \mathbb{R}^{*}. Donc le produit de ces deux fonctions, c'est-à-dire la fonction $x \mapsto \frac{1}{x} \times \ln \left(1+x^{2}\right)$, est continue sur $\dot{\mathbb{R}}^{*}$.
- Continuité en 0 : pour $x \neq 0$, on a $f(x)=x \times \frac{\ln \left(1+x^{2}\right)}{x^{2}}$.

D'aprè̀s le théorème sur la limite d'une fonction composée, on a : $\lim _{x \rightarrow 0} x^{2}=0$ et $\lim _{X \rightarrow 0} \frac{\ln (1+X)}{X}=1$ donc, d'après le théorème sur la limite des fonctions composées, on a $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{x^{2}}=1$. On en déduit que $\lim _{x \rightarrow 0} f(x)=0=f(0)$ et f est continue en 0 . Finalement f est continue sur \mathbb{R}.

Exercice 49.

Montrer que ai x est un reel different de 1 . alows f ert continue en t puis etudier la continuile de I eit 1

Solution

- Continuité en $x \neq 1$: sur $]-\infty ; 1\left[\right.$, la fonction $x \mapsto x^{2}$ est continue. Sur $] 1 ;+\infty[$, la fonction \ln est continue ainsi que la fonction $x \mapsto \frac{1}{x}$ donc le produit de ces deux fonctions, c'est à dire la fonction $x \mapsto \frac{\ln (x)}{x}$, est encore continue. La fonction constante égale à 1 est continue sur $] 1 ;+\infty\left[\right.$ donc la fonction $x \mapsto 1+\frac{\ln (x)}{x}$ est continue sur $] 1 ;+\infty[$. Donc si x est un réel différent de I alors la fonction f est continue en x.
- Continuité en 1: $\lim _{x \rightarrow 1^{-}} x^{2}=1$ car la fonction $x \mapsto x^{2}$ est continue en 1. $\lim _{x \rightarrow 1^{+}} \frac{\ln (x)}{x}=0$ car la fonction $x \mapsto \frac{\ln (x)}{x}$ est continue en 1 . Donc $\lim _{x \rightarrow 1^{+}}\left[1+\frac{\ln (x)}{x}\right]=1 . \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=1$ on en déduit alors $\lim _{x \rightarrow 1} f(x)=1=f(1)$ et f est continue en 1 . Finalement $\cdot f$ est continue $\operatorname{sur} \mathbb{R}$.

IV. La dérivation

\checkmark Dérivabilité en un point

Exercice 50.

Solution

- Dérivabilité en $x \neq 0$: la fonction $x \mapsto 1+x^{2}$ est dérivable et strictement positive sur \mathbb{R} et la fonction \ln est dérivable sur \mathbb{R}_{+}^{*} donc la fonction $x \mapsto \ln \left(1+x^{2}\right)$ est dérivable sur \mathbb{R}. La fonction $x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}^{*} donc le produit de ces deux fonctions, c'est-à-dire la fonction $x \mapsto \frac{1}{x} \times \ln \left(1+x^{2}\right)$, est dérivable sur \mathbb{R}^{*}.
- Dérivabilitể en 0 : pour x non nul, on a $\frac{f(x)-f(0)}{x}=\frac{\ln \left(1+x^{2}\right)}{x^{2}}$. D'après le théorème sur la limite d'une fonction composée, on a :

$$
\lim _{x \rightarrow 0} x^{2}=0 \text { et } \lim _{X \rightarrow 0} \frac{\ln (1+X)}{X}=1 \text { donc } \lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{x^{2}}=1 .
$$

$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}=1$ donc f est dérivable en 0 et on a: $f^{\prime}(0)=1$.
Exericice 51.

Solution

- Dérivabilité en $x \neq 1:$ sur $\mid-\infty ; 1\left[, \mathrm{la}\right.$ fonction $x \mapsto x^{2}$ est
dérivable. Sur $] 1 ;+\infty[$, la fonction \ln est dérivable, ainsi que la fonction $x \mapsto \frac{1}{x}$. Le produit de ces deux fonctions, c'est-à-dire la fonction $x \mapsto \frac{\ln (x)}{x}$, est encore dérivable. On en déduit que la fonction $x \mapsto 1+\frac{\ln (x)}{x}$ est dérivable sur $] 1 ;+\infty[$. Si x est un réel différent de 1 alors la fonction f est dérivable en x.
- Dérivabilité en 1 : on pose $x=1+h$.
- Si $h<0$ alors $f(1+h)=(1+h)^{2}$.
$\frac{f(1+h)-f(1)}{h}=\frac{(1+h)^{2}-1}{h}=\frac{1+2 h+h^{2}-1}{h}=2+h$.
donc $\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=2$.
- Si $h>0$ alors $f(1+h)=1+\frac{\ln (1+h)}{1+h}$.
$\frac{f(1+h)-f(1)}{h}=\frac{1+\frac{\ln (1+h)}{1+h}-1}{h}=\frac{\ln (1+h)}{(1+h) h}=\frac{1}{1+h} \times \frac{\ln (1+h)}{h}$.
$\lim _{h \rightarrow 0^{+}} \frac{\ln (1+h)}{h}=1$ (limite du cours) et $\lim _{h \rightarrow 0^{+}} \frac{1}{1+h}=1$ donc
$\lim _{h \rightarrow 0^{+}} \frac{1}{1+h} \times \frac{\ln (1+h)}{h}=1$ d'où $\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=1$.
Comme $\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=2$ et $\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=1$, la fonction f n'est pas dérivable en 1 (elle est cependant continue en 1 , voir exercice 49).
\checkmark In et fonctions polynômes ou rationnelles

Exercice 52.

Solution

1. Pour tout réel x, on pose $u(x)=5 x^{2}-x+1 . u(x)>0$ et on a:
$f(x)=\ln (u(x))$. Comme $u^{\prime}(x)=10 x-1$, on en déduit:
$f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=\frac{10 x-1}{5 x^{2}-x+1}$. Pour tout réel $x: f^{\prime}(x)=\frac{10 x-1}{5 x^{2}-x+1}$.
2. On peut remarquer que $g(x)=u(\ln (x))$ donc:
$g^{\prime}(x)=\frac{1}{x} \times u^{\prime}(\ln (x))=\frac{1}{x}(10 \ln (x)-1)=\frac{10 \ln (x)-1}{x}$.
Pour tout x de I, on a : $g^{\prime}(x)=\frac{10 \ln (x)-1}{x}$.

Exercice 53.

Determiner la cérived des tonitions suivantes, on admettra que wed thenctions sont derivatiles cirt 1

1. $\because f(x)=\ln \left(x^{x}-3 \pi, 1\right) \cdot 1=|x+\infty|$
2. $g(x)=\ln ^{2}(x)=3 \ln (x) \mid=1=11+\infty$

Solution

1. Pour tout $x \in\left[2 ;+\infty\left[\right.\right.$, on pose $u(x)=x^{3}-3 x+1>0$.
$f(x)=\ln (u(x))$. Comme $u^{\prime}(x)=3 x^{2}-3$; on en déduit :
$f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=\frac{3 x^{2}-3}{x^{3}-3 x+1} . f^{\prime}(x)=\frac{3 x^{2}-3}{x^{3}-3 x+1}$.
2. On peut remarquer que $g(x)=u(\ln (x))$ donc $g^{\prime}(x)=\frac{1}{x} \times u^{\prime}(\ln (x))$

Pour tout x appartenant à $] 0 ;+\infty\left[\right.$, on a : $g^{\prime}(x)=\frac{3 \ln ^{2}(x)-3}{x}$.

Exercice 54.

 foridion sont derivilisis sur.I

1. $f(x)=\ln \left(\frac{x^{2}+2 x-1}{2-2}\right)^{1}=12$
2. $\left(q(x)=\ln ^{2}(m) .21 r u x\right.$

Solution

1. Pour tout $x \in] 2 ;+\infty\left[\right.$, on pose $u(x)=\frac{x^{2}+2 x-1}{x-2}>0$.

$$
\begin{gathered}
u^{\prime}(x)=\frac{(2 x+2)(x-2)-\left(x^{2}+2 x-1\right)}{(x-2)^{2}}=\frac{x^{2}-4 x-3}{(x-2)^{2}} \\
f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=\frac{\frac{x^{2}-4 x-3}{\frac{(x-2)^{2}}{x^{2}+2 x-1}}=\frac{x^{2}-4 x-3}{(x-2)\left(x^{2}+2 x-1\right)}}{x} . \\
f^{\prime}(x)=\frac{x^{2}-4 x-3}{(x-2)\left(x^{2}+2 x-1\right)}
\end{gathered}
$$

2. En remarquant que $g(x)=u(\ln (x))$, on a $g^{\prime}(x)=\frac{1}{x} \times u^{\prime}(\ln (x))$.

Pour tout x appartenant à $] e^{2} ;+\infty[$, on a :

$$
g^{\prime}(x)=\frac{1}{x} \times \frac{\ln ^{2}(x)-4 \ln (x)-3}{(\ln (x)-2)^{2}} .
$$

Exercice 55.

Deferminer la dervec des fonctions sulvantes ent admetita quic ce: fonet fous sont derivables sur

2. $g(w)$

Solution

1. Pour tout $x \in] 4 ;+\infty\left[\right.$, on pose $u(x)=\frac{x^{2}+3 x-1}{x-4}>0$.

Comme $u^{\prime}(x)=\frac{x^{2}-8 x-11}{(x-4)^{2}}$, on en déduit:

$$
\begin{gathered}
f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=\frac{\frac{x^{2}-8 x-11}{(x-4)^{2}}}{\frac{x^{2}+3 x-1}{x-4}}=\frac{x^{2}-8 x-11}{(x-4)\left(x^{2}+3 x-1\right)} . \\
f^{\prime}(x)=\frac{x^{2}-8 x-11}{(x-4)\left(x^{2}+3 x-1\right)} .
\end{gathered}
$$

2. En remarquant que $g(x)=u(\ln (x))$, on a $g^{\prime}(x)=\frac{1}{x} \times u^{\prime}(\ln (x))$.

Pour tout x appartenant à $] e^{4} ;+\infty[$, on a :

$$
g^{\prime}(x)=\frac{\ln ^{2}(x)-8 \ln (x)-11}{x(\ln (x)-4)^{2}} .
$$

Logarithme et fonctions trigonométriques

Exercice 56.

Detemmer la defivee te: forctist cuyantes: On preciseia lensenble de definition te ces fontions: a leilemble de dervabilie.

1. $f(x)=\ln (\sin (x)$
2. $g(x)=\sin (\ln (x)$

Solution

1. Si on appelle E_{f} l'ensemble de définition de f, on a:
$\left(x \in E_{f}\right) \Leftrightarrow(\sin (x)>0) \Leftrightarrow(x \in \mid 2 k \pi ;(2 k+1) \pi[$ avec $k \in \mathbb{Z})$.
Donc E_{f} est la réunion des intervalles de la forme $\int 2 k \pi ;(2 k+1) \pi[$ avec $k \in \mathbb{Z}$, ce qui s'écrit encore :

$$
\left.E_{f}=\bigcup_{k \in \mathbb{Z}} 2 k \pi ;(2 k+1) \pi\right] \text {. }
$$

Sur E_{f}, la fonction sin est dérivable et strictement positive. La fonction ln est dérivable sur \mathbb{R}_{+}^{*} donc la composée $f=\operatorname{lno} \sin$ est dérivable sur E_{f} et $f^{\prime}(x)=\frac{\sin ^{\prime}(x)}{\sin (x)}=\frac{\cos (x)}{\sin (x)}=\frac{1}{\tan (x)} \cdot f^{\prime}(x)^{\prime}=\frac{1}{\tan (x)}$.
2. $E_{g}=\mathbb{R}_{+}^{*}$. Sur E_{g}, la fonction \ln est dérivable. La fonction sin est dérivable sur \mathbb{R} donc la composée $g=\operatorname{sinoln}$ est dérivable sur E_{g}. On a $: g^{\prime}(x)=\ln ^{\prime}(x) \times \cos (\ln (x))=\frac{\cos (\ln (x))}{x} \cdot g^{\prime}(x)=\frac{\cos (\ln (x))}{x}$.

Exercice 57.

Déteminey la deriver ies fome tiofs buydante:. On preciserat llensentile

1. $(x(x)=\operatorname{Tn}(\cos (x)$
2. $y(t)=\cos \ln (t)$

Solution

1. Si on note E_{f} I'ensemble de définition de la fonction f on a :

$$
\left(x \in E_{f}\right) \Leftrightarrow(\cos (x)>0) \Leftrightarrow(x \in]-\frac{\pi}{2}+2 k \pi ; \frac{\pi}{2}+2 k \pi[\text { avec } k \in \mathbb{Z})
$$

Donc l'ensemble de définition, E_{f}, de la fonction f est la réunion des intervalles de la forme $]-\frac{\pi}{2}+2 k \pi ; \frac{\pi}{2}+2 k \pi[$ avec $k \in \mathbb{Z}$.

$$
\left.E_{f}=\bigcup_{k \in \mathbb{Z}}\right]-\frac{\pi}{2}+2 k \pi ; \frac{\pi}{2}+2 k \pi \text {. }
$$

Sur E_{f}, la fonction cos est dérivable et strictement positive. La fonction ln est dérivable sur \mathbb{R}_{+}^{*} donc la composée $f=\operatorname{lno}$ cos est dérivable sur $E_{f} \cdot f^{\prime}(x)=\frac{\cos ^{\prime}(x)}{\cos (x)}=-\frac{\sin (x)}{\cos (x)}=-\tan (x) . \quad f^{\prime}(x)=-\tan (x)$.
2. $E_{g}=\mathbb{R}_{+}^{*}$. Sur E_{g}, la fonction \ln est dérivable. La fonction cos est dérivable sur \mathbb{R} donc la composée $g=(\cos) \circ \ln$ est dérivable sur E_{g}.
On a: $g^{\prime}(x)=\ln ^{\prime}(x) \times(-\sin (\ln (x))) \cdot g^{\prime}(x)=-\frac{\sin (\ln (x))}{x}$.

Exercice 58.

Solution

1. Si on note E_{f} l'ensemble de définition de la fonction f, on a :
$\left(x \in E_{f}\right) \Leftrightarrow(\tan (x)>0) \Leftrightarrow(x \in] k \pi ; \frac{\pi}{2}+k \pi[\operatorname{avec} k \in \mathbb{Z})$.
E_{f} est la réunion des intervalles $] k \pi ; \frac{\pi}{2}+k \pi[$ avec $k \in \mathbb{Z}$.

$$
\left.E_{f}=\bigcup_{k \in \mathbb{Z}}\right] k \pi ; \frac{\pi}{2}+k \pi
$$

Sur E_{f}, la fonction tan est dérivable et strictement positive. La fonction \ln est dérivable sur \mathbb{R}_{+}^{*}, donc $f=\ln 0 \tan$ est dérivable sur E_{f}.
Pour tout $x \in E_{f}, \tan ^{\prime}(x)=1+\tan ^{2}(x)$.
$f^{\prime}(x)=\frac{\tan ^{\prime}(x)}{\tan (x)}=\frac{1+\tan ^{2}(x)}{\tan (x)}=\frac{1}{\tan (x)}+\tan (x)$.

Pour tout $x \in E_{f}, f^{\prime}(x)=\frac{1}{\tan (x)}+\tan (x)$ ou $f^{\prime}(x)=\frac{1}{\sin (x) \cos (x)}$ ou $f^{\prime}(x)=\frac{2}{\sin (2 x)}$.
2. Si on note E_{g}, l'ensemble de définition de g on a:
$\left(x \in E_{g}\right) \Leftrightarrow\left(x>0\right.$ et $\ln (x) \neq \frac{\pi}{2}+k \pi$ avec $\left.k \in \mathbb{Z}\right)$.
$\left(x \in E_{g}\right) \Leftrightarrow\left(x>0\right.$ et $x \neq e^{\frac{\pi}{2}+k \pi}$ avec $\left.k \in \mathbb{Z}\right)$.
donc E_{g} est l'ensemble des réels strictement positifs différents des nombres de la forme $e^{\frac{\pi}{2}+k \pi}$ avec $k \in \mathbb{Z}$. Pour tout x de E_{g}, la fonction \ln est dérivable en x et $\ln (x) \neq \frac{\pi}{2}+k \pi \quad(k \in \mathbb{Z})$ donc la fonction tan est dérivable en $\ln (x)$. La fonction g est donc dérivable sur E_{g}.
Pour tout $x \in E_{g} g^{\prime}(x)=\ln ^{\prime}(x) \times \tan ^{\prime}(\ln (x))=\frac{1}{x}\left(1+\tan ^{2}(\ln (x))\right)$.

$$
g^{\prime}(x)=\frac{1}{x}\left(1+\tan ^{2}(\ln (x))\right) \text { ou } g^{\prime}(x)=\frac{1}{x \cos ^{2}(\ln (x))} \text {. }
$$

Exercice 59.

Solution

On pose $u(x)=\sin ^{2}(x)$. On appelle E_{f} l'ensemble de définition de la fonction f.
$\left(x \in E_{f}\right) \Leftrightarrow(u(x)>0) \Leftrightarrow(\sin (x) \neq 0) \Leftrightarrow(x \neq k \pi$ avec $k \in \mathbb{Z})$.
L'ensemble de définition, E_{f}, de la fonction f est la réunion des intervalles $] k \pi ;(k+1) \pi[$ avec $k \in \mathbb{Z}$, ce qui peut s'écrire

$$
E_{f}=\bigcup_{k \in \mathbb{Z}} J k \pi ;(k+1) \pi
$$

Sur E_{f}, la fonction u est dérivable et strictement positive. La fonction
ln est dérivable sur \mathbb{R}_{+}^{*} donc la composée $f=\ln \circ u$ est dérivable sur $E_{f} \cdot f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=\frac{2 \sin (x) \cos (x)}{\sin ^{2}(x)}$.

$$
f^{\prime}(x)=\frac{2 \cos (x)}{\sin (x)} \text {. }
$$

1. On peut remarquer que $g(x)=u(\ln (x))$ avec $u(x)=\sin ^{2}(x)$.

Si on appelle E_{g} l'ensemble de définition de la fonction g, on a: $\left(x \in E_{g}\right) \Leftrightarrow(x>0)$ donc $E_{g}=\mathbb{R}_{+}^{*}$. Sur E_{g}, la fonction ln est dérivable. La fonction u est dérivable sur \mathbb{R} donc la composée $g=u \circ \ln$ est dérivable sur E_{g}. Pour tout x appartenant à E_{g}, on a :

$$
g^{\prime}(x)=\ln ^{\prime}(x) \times 2 \sin (\ln (x)) \cos (\ln (x)) \cdot g^{\prime}(x)=\frac{\sin (2 \ln (x))}{x} .
$$

Exercice 60.*

Determinet li derivec des fonctimit suivintes: On precisera lensenible de definition de ces fonctions et l'ensemble de derivabilite.

1. $\operatorname{rar}\left(\ln \left(\tan \left(\frac{3}{2}\right)\right.\right.$
$2 . y(x)=\operatorname{lan}\left(\frac{\ln (x)}{2}\right)$

Solution

1.. On pose $u(x)=\tan \left(\frac{x}{2}\right)$.
$(u(x)>0) \Leftrightarrow\left(\tan \left(\frac{x}{2}\right)>0\right) \Leftrightarrow\left(\frac{x}{2} \in\right] k \pi ; \frac{\pi}{2}+k \pi[)$.
Finalement, $(u(x)>0) \Leftrightarrow(x \in] 2 k \pi ;(2 k+1) \pi[$ avec $k \in \mathbb{Z})$.
On en déduit que l'ensemble de définition, E_{f}, de la fonction f est la réunion des intervalles de la forme $] 2 k \pi ;(2 k+1) \pi[$ avec $k \in \mathbb{Z}$, ce qui peut s'écrire: $E_{f}=\bigcup_{k \in \mathbb{Z}} 2 k \pi ;(2 k+1) \pi$.
Sur E_{f}, la fonction u est dérivable et strictement positive. La fonction ln étant dérivable sur \mathbb{R}_{+}^{*}, on en déduit que la composée, $f=\operatorname{lno} u$, est dérivable sur E_{f}. On a $: u^{\prime}(x)=\frac{1}{2 \cos ^{2}\left(\frac{x}{2}\right)}$ et

$$
f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=\frac{\frac{1}{2 \cos ^{2}\left(\frac{x}{2}\right)}}{\frac{\sin \left(\frac{x}{2}\right)}{\cos \left(\frac{x}{2}\right)}}=\frac{1}{2 \cos \left(\frac{x}{2}\right) \sin \left(\frac{x}{2}\right)} \cdot f^{\prime}(x)=\frac{1}{\sin (x)} .
$$

2. On peut remarquer que $g(x)=u(\ln (x))$.

Si on appelle E_{g} l'ensemble de définition de la fonction g, on a: $\left(x \in E_{g}\right) \Leftrightarrow(x>0$ et $\ln (x) \neq \pi+2 k \pi$ avec $k \in \mathbb{Z})$. $\left(x \in E_{g}\right) \Leftrightarrow\left(x>0\right.$ et $x \neq e^{(2 k+1) \pi}$ avec $\left.k \in \mathbb{Z}\right)$.
Donc l'ensemble E_{g} est l'ensemble des réels strictement positifs privé des nombres de la forme $x \neq e^{(2 k+1) \pi}$ avec $k \in \mathbb{Z}$.

Pour tout x appartenant à E_{g}, la fonction \ln est dérivable en x et la fonction u est dérivable en $\ln (x)$, donc la fonction g est dérivable en x.
Pour tout x appartenant à E_{g}, on a : $g^{\prime}(x)=\frac{1}{2 x \cos ^{2}\left(\frac{\ln (x)}{2}\right)}$.
In et racine carrée
Exercice 61.

Solution

1. On pose $u(x)=x+\sqrt{x^{2}+1}$. La fonction u est définie et dérivable sur. \mathbb{R}, de plus elle y est strictement positive (en effet $\left.\sqrt{x^{2}+1}>\sqrt{x^{2}}=|x|\right)$. La fonction ln est définie et dérivable sur \mathbb{R}_{+}^{*} donc la composée lno u, c'est-à-dire f, est définie et dérivable sur \mathbb{R}.
On a : $u^{\prime}(x)=1+\frac{x}{\sqrt{x^{2}+1}}=\frac{x+\sqrt{x^{2}+1}}{\sqrt{x^{2}+1}}=\frac{u(x)}{\sqrt{x^{2}+1}}$ et donc

$$
f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=\frac{1}{\sqrt{x^{2}+1}} \text {. Pour tout réel } x, f^{\prime}(x)=\frac{1}{\sqrt{x^{2}+1}} .
$$

2. On peut remarquer que $g(x)=u(\ln (x))$. La fonction \ln est définie et dérivable sur \mathbb{R}_{+}^{*}, elle prend ses valeurs dans \mathbb{R} et, comme la fonction u est définie et dérivable sur \mathbb{R}, on en déduit que la composée $u \circ \ln$, c'est-à-dire g, est définie et dérivable sur \mathbb{R}_{+}^{*}.

$$
\text { On a: } g^{\prime}(x)=\frac{1}{x} \times u^{\prime}(\ln (x))=\frac{1}{x} \times \frac{u(\ln (x))}{\sqrt{\ln ^{2}(x)+1}}=\frac{\ln (x)+\sqrt{\ln ^{2}(x)+1}}{x \sqrt{\ln ^{2}(x)+1}} \text {. }
$$

Exercice 62.**

Determiner la dérivé des fonetions puivantes. On precisera lensernble. de deffinition de ces fonctionst t Iteneemble de dorivabilite:
3. $f(a)=\ln (x, \sqrt{x}, 3)$
2. $g(x) \div \ln (x)-\sqrt{\ln t(x)}$

Solution

1. On pose $u(x)=x-\sqrt{x^{2}-1}$.

On a $x^{2}-1 \geq 0$ si et seulement si $\left.\left.x \in\right]-\infty ;-1\right] \cup[1 ;+\infty[$.
Donc u est définie sur $I=]-\infty ;-1] \cup[1 ;+\infty[$.
Étude du signe de $u(x)$ pour $x \in I$.
$(x \in I$ et $u(x)>0) \Leftrightarrow\left(x \in I\right.$ et $\left.x>\sqrt{x^{2}-1}\right)$.
$(x \in I$ et $u(x)>0) \Leftrightarrow\left(x>1\right.$ et $\left.x^{2}>x^{2}-1\right)$.
$(x \in I$ et $u(x)>0) \Leftrightarrow(x>I$ et $0>-\mathbb{I})$.
$(x \in I$ et $u(x)>0) \Leftrightarrow(x \in] I ;+\infty[)$.
On en déduit que sur $\mid 1 ;+\infty[$, la fonction u est définie et dérivable. De plus, sur cet intervalle, u est strictement positive. Comme la fonction \ln est définie et dérivable sur $] 0 ;+\infty[$, la composée, lno $u=f$, est définie et dérivable sur $] 1 ;+\infty[$.
Pour tout réel x appartenant à $] 1 ;+\infty[$, on a :

$$
u^{\prime}(x)=1-\frac{x}{\sqrt{x^{2}-1}}=-\frac{u(x)}{\sqrt{x^{2}-1}}, f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)} \cdot f^{\prime}(x)=\frac{-1}{\sqrt{x^{2}-1}} .
$$

2. $g(x)=\ln (x)-\sqrt{\ln ^{2}(x)-1}$.

On peut remarquer que $g(x)=u(\ln (x))$. La fonction \ln est définie et dérivable sur $] 0 ;+\infty[$, elle prend ses valeurs dans \mathbb{R}.
La fonction u est définie sur $I=]-\infty ;-1] \cup[1 ;+\infty[$.
On a : $(\ln (x) \in]-\infty ;-1] \cup\left[1 ;+\infty[) \Leftrightarrow(x \in] 0 ; \frac{1}{e}\right] \cup[e ;+\infty[)$.
On en déduit que la composée $u \circ \ln$, c'est-à-dire g, est définie sur $\left.J=] 0 ; \frac{1}{e}\right] \cup[e ;+\infty]$.

La fonction u est dérivable sur $]-\infty ;-1[\cup] 1 ;+\infty[$ (Attention la fonction racine n'est pas dérivable en 0).
On a : $(\ln (x) \in]-\infty ;-1[\cup] I ;+\infty[) \Leftrightarrow(x \in] 0 ; \frac{1}{e}[\cup] e ;+\infty[)$.
La composée $u \circ \ln$, c'est-à-dire g, est dérivable sur $K=] 0 ; \frac{1}{e}[\cup] e ;+\infty$. Pour tout réel x de K, on a:

$$
g^{\prime}(x)=\frac{1}{x} \times u^{\prime}(\ln (x))=\frac{1}{x} \times\left[\frac{-u(\ln (x))}{\sqrt{\ln ^{2}(x)-1}}\right]=\frac{1}{x} \times\left[\frac{\sqrt{\ln ^{2}(x)-1}-\ln (x)}{\sqrt{\ln ^{2}(x)-1}}\right] .
$$

Donc $g^{\prime}(x)=\frac{1}{x} \times\left[1-\frac{\ln (x)}{\sqrt{\ln ^{2}(x)-1}}\right]$.
Exercice 63.

Solution

On pose $u(x)=x^{2}-1-\ln \left(x^{2}\right)$. On utilise les résultats de l'exercice 68.
Pour tout $x>0$, on $\mathrm{a}: \ln (x) \leq x-1$. Si on remplace x par x^{2}, on a :
pour tout $x \in \mathbb{R}^{*}, \ln \left(x^{2}\right) \leq x^{2}-1$, et donc $u(x) \geq 0$. Comme $f=\sqrt{u}$, l'ensemble de définition de f est \mathbb{R}^{*}.
Pour x différent de 0 , on a: $u^{\prime}(x)=2 x-\frac{2}{x}=\frac{2\left(x^{2}-1\right)}{x}$. La fonction u est paire, strictement décroissante sur $] 0 ; 1]$ et strictement croissante sur $[1 ;+\infty[$. Comme $u(1)=0$, on a , pour tout x appartenant à I, $u(\bar{x}) \neq 0$ donc $u(x)>0$.
Sur E_{f}, la fonction u est dérivable et strictement positive, donc la fonction $f=\sqrt{u}$ est dérivable sur E_{f}.
$f^{\prime}(x)=\frac{u^{\prime}(x)}{2 \sqrt{u(x)}}=\frac{\frac{2\left(x^{2}-1\right)}{x}}{2 \sqrt{x^{2}-1-\ln \left(x^{2}\right)}} \cdot f^{\prime}(x)=\frac{x^{2}-1}{x \sqrt{x^{2}-1-\ln \left(x^{2}\right)}}$.
Remarque: on montre que $\lim _{x \rightarrow 0^{-}} \frac{f(1+x)-f(1)}{x}=-\sqrt{2}$ et $\lim _{x \rightarrow 0^{+}} \frac{f(1+x)-f(1)}{x}=\sqrt{2}$. La fonction f n'est pas dérivable en 1 . En utilisant la parité de f, on en déduit que f n'est pas dérivable en -1 .

\checkmark Logarithme et exponentielle

Exercice 64.

Solution

- Si on appelle E_{f} l'ensemble de définition de f on a:
$\left(x \in E_{f}\right) \Leftrightarrow\left(e^{x}-1>0\right) \Leftrightarrow\left(e^{x}>1\right) \Leftrightarrow(x>0)$ donc $\left.E_{f}=\right] 0 ;+\infty$.
On pose, pour tout réel x de $E_{f}, u(x)=e^{x}-1$. On a $f=\operatorname{lno} u$. Sur E_{f}, la fonction u est dérivable et strictement positive et la fonction \ln est dérivable sur \mathbb{R}_{+}^{*} donc la fonction composée, $\operatorname{lno} u=f$, est dérivable sur E_{f}. On a $f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=\frac{e^{x}}{e^{x}-1}$ donc $f^{\prime}(x)=\frac{e^{x}}{e^{x}-1}$.
- On pose $u(x)=e^{2 x}-e^{x}+3$. Le discriminant de $x^{2}-x+3$ est
négatif (-11). On a, pour tout réel $x, x^{2}-x+3>0$. La fonction u est strictement positive sur \mathbb{R}. Si on appelle E_{g} l'ensemble de définition de la fonction composée, lno $u=g$, on a $E_{g}=\mathbb{R}$. Sur E_{g}, la fonction u est dérivable et strictement positive et la fonction \ln est dérivable sur \mathbb{R}_{+}^{*} donc la fonction composée, $\ln \circ u=g$, est dérivable sur E_{g}. On a $g^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}$ donc $g^{\prime}(x)=\frac{2 e^{2 x}-e^{x}}{e^{2 x}-e^{x}+3}$.

Exercice 65.

Solution

- $f(x)=\ln \left(e^{2 x-5}-7\right)$. On pose $u(x)=e^{2 x-5}-7$ et on appelle E_{f} l'ensemble de définition de f.
$\left(x \in E_{f}\right) \Leftrightarrow(u(x)>0) \Leftrightarrow\left(e^{2 x-5}>7\right) \Leftrightarrow(2 x-5>\ln (7)) \Leftrightarrow\left(x>\frac{\ln (7)+5}{2}\right)$
donc $E_{f}=\frac{\ln (7)+5}{2} ;+\infty$.
Sur E_{f}, la fonction u est dérivable et strictement positive et la fonction \ln est dérivable sur \mathbb{R}_{+}^{*} donc la fonction composée, $\operatorname{lno} u=f$, est dérivable sur E_{f}. On a $f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}$ donc $f^{\prime}(x)=\frac{2 e^{2 x-5}}{e^{2 x-5}-7}$. - $g(x)=\ln \left(-2 e^{2 x}-e^{x}+6\right)$. On pose $u(x)=-2 e^{2 x}-e^{x}+6$ et on appelle E_{g} l'ensemble de définition de g. On doit étudier le signe de $u(x)$. On peut remarquer qu'en posant $X=e^{x}$ cela revient à étudier le signe du polynôme $-2 X^{2}-X+6$ sachant que $X>0$.
$\Delta=49, X_{1}=\frac{1-7}{-4}=\frac{3}{2}$ et $X_{2}=\frac{1+7}{-4}=-2$.
Donc $\left(\left[\begin{array}{l}-2 X^{2}-X+6>0 \\ X>0\end{array}\right) \Leftrightarrow(X \in] 0 ; \frac{3}{2}[)\right.$.
Comme $X=e^{x}$ on $\left.\left.\mathrm{a}:(u(x)>0) \Leftrightarrow(x \in]-\infty ; \ln \left(\frac{3}{2}\right)\right]\right)$.

En conclusion : $E_{g}=-\infty ; \ln \left(\frac{3}{2}\right)$.
Sur E_{g} la fonction u est dérivable et strictement positive et la fonction \ln est dérivable sur \mathbb{R}_{+}^{*} donc la fonction composée, lno $u=g$, est dérivable sur E_{g}. On a $g^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}$ donc $g^{\prime}(x)=\frac{-4 e^{2 x}-e^{x}}{-2 e^{x}-e^{x}+6}$.

Exercice 66.

2. Testominer, pour tout red de lensemble f, ta derivata de f

Solution

1. On pose $u(x)=\frac{e^{2 x}-3 e^{x}+3}{e^{2 x}-3 e^{x}+2}$. On a $: f=\ln \circ u$.

Le discriminant du trinôme $X^{2}-3 X+3$ est négatif; pour tout réel x, $e^{2 x}-3 e^{x}+3>0$. Le signe de $: u(x)$ est celui de son dénominateur, c'est-à-dire $e^{2 x}-3 e^{x}+2$. On a: $X^{2}-3 X+2=(X-1)(X-2)$. D'après le signe du trinôme, on a : $\left(\left[\begin{array}{l}X^{2}-3 X+2>0 \\ X>0\end{array}\right) \Leftrightarrow(X \in] 0 ; 1[\cup] 2 ;+\infty[)\right.$. $(0<X<1) \Leftrightarrow\left(0<e^{x}<1\right) \Leftrightarrow\left(\ln \left(e^{x}\right)<\ln (1)\right) \Leftrightarrow(x<0)$.
$(2<X) \Leftrightarrow\left(2<e^{x}\right) \Leftrightarrow\left(\ln (2)<\ln \left(e^{x}\right)\right) \Leftrightarrow(\ln (2)<x)$.
$\left(x \in E_{f}\right) \Leftrightarrow\left(e^{2 x}-3 e^{x}+2>0\right)$.
$\left(x \in E_{f}\right) \Leftrightarrow(x \in]-\infty ; 0[U] \ln (2) ;+\infty[)$.

$$
\left.\left.E_{f}=\right]-\infty ; 0[\cup] \ln (2) ;+\infty\right] .
$$

La fonction u est dérivable et strictement positive sur E_{f} et la fonction \ln est dérivable sur \mathbb{R}_{+}^{*} donc la composée, $f=\ln \circ u$, est dérivable sur $\left.E_{f} \cdot E_{f^{\prime}}=E_{f}=\right]-\infty ; 0[U] \ln (2) ;+\infty$
2. On peut remarquer, pour faciliter le calcul de la dérivée, que :

Pour tout x appartenant à $]-\infty ; 0[\cup] \ln (2) ;+\infty[$.
$u(x)=\frac{e^{2 x}-3 e^{x}+2+1}{e^{2 x}-3 e^{x}+2}=1+\frac{1}{e^{2 x}-3 e^{x}+2} \cdot u^{\prime}(x)=-\frac{2 e^{2 x}-3 e^{x}}{\left(e^{2 x}-3 e^{x}+2\right)^{2}}$.
$f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=\frac{-\frac{2 e^{2 x}-3 e^{x}}{\left(e^{2 x}-3 e^{x}+2\right)^{2}}}{\frac{e^{2 x}-3 e^{x}+3}{e^{2 x}-3 e^{x}+2}}=-\frac{2 e^{2 x}-3 e^{x}}{\left(e^{2 x}-3 e^{x}+2\right)\left(e^{2 x}-3 e^{x}+3\right)}$.
V. Position relative de la courbe et d'une droite

Position relative de la courbe et de la tangente
Exercice 6%

Soit α un réel strictement positif. On considère le point $M(\alpha, \ln (\alpha))$ appartenant à (C). La tangente T, en M, à (C) a pour équation : $y=\frac{1}{\alpha}(x-\alpha)+\ln (\alpha)$ c'est-à-dire $y=\frac{1}{\alpha} x+\ln (\alpha)-I$.
La position de la courbe par rapport à sa tangente s'obtient en étudiant le signe de $\varphi(x)=\ln (x)-\frac{1}{\alpha} x-\ln (\alpha)+1$.
On a, pour tout $x>0 ; \varphi^{\prime}(x)=\frac{1}{x}-\frac{1}{\alpha}$.

x	0		α	$+\infty$
$\varphi^{\prime}(x)$		+	0	-

Donc φ admet un maximum en $x=\alpha$ et $\varphi(\alpha)=0$ donc pour tout $x>0, \varphi(x) \leq 0$. (C) est en dessous de toutes ses tangentes sur $] 0 ;+\infty[$.
Remarque : on dit que la fonction logarithme est concave sur $] 0 ;+\infty[$.
Exercice 68.

Solution

En reprenant les notations de l'exercice précédent, on a, pour $x>0$, $\varphi(x) \leq 0$, c'est-à-dire $\ln (x) \leq \frac{1}{\alpha} x+\ln (\alpha)-1$. Si $\alpha=1$ cette inégalité s'écrit $\ln (x) \leq x-1$.
Remarque: cette inégalité peut s'obtenir directement en étudiant la fonction $x \mapsto \ln (x)-x+1$.
Si on remplace x par $\frac{1}{x}$, on obtient:
$\left(\ln \left(\frac{1}{x}\right) \leq \frac{1}{x}-1\right) \Leftrightarrow\left(-\ln (x) \leq \frac{1}{x}-1\right) \Leftrightarrow\left(\ln (x) \geq 1-\frac{1}{x}\right)$.
Remarque : on peut obtenir directement cette inégalité en étudiant la fonction $x \mapsto \ln (x)+\frac{1}{x}-1$.
Finalement, pour $x>0,1-\frac{1}{x} \leq \ln (x) \leq x-1$.

Fxercice 69.

 comile represontative de la fonetiont f dans le repere ofthenorme $\left(\rho_{2}^{*}, \overrightarrow{2}\right)$

1. Verifier que l enseriule vic, tefruiton de la lonction I est, 10
2. Salouler la derveed de la fonction f
3. Déterminer une diution de la langente (T) a la courbe (G) au point diabsased 1
4. Wividiet la poitimo relative de a courbe. (e) et de la arcice (T)
 tangente (T)

Solution

1. $\left(\frac{x}{2-x}>0\right) \Leftrightarrow(0<x<2)$ donc $\left.E_{f}=\right] 0 ; 2$.
2. La fonction f est dérivable sur son ensemble de définition.

Pour tout $x \in E_{f}$, on pose $u(x)=\frac{x}{2-x}$, donc $f(x)=\ln (u(x))$.
$f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=\frac{2}{(2-x)^{2}} \times \frac{(2-x)}{x} . f^{\prime}(x)=\frac{2}{x(2-x)}$.
3. f est dérivable en 1 donc (C) admet une tangente au point d'abscisse 1 d'équation: $y=f^{\prime}(1) \times(x-1)+f(1) \quad$ c'est à dire $y=2 x-2$.
4. On pose, pour tout $x \in E_{f}, \varphi(x)=f(x)-(2 x-2)$.

Il suffit d'étudier le signe de la fonction φ sur E_{f}.
Pour tout $x \in E_{f}$, on a : $\varphi^{\prime}(x)=f^{\prime}(x)-2=\frac{2}{x(2-x)}-2=\frac{2(x-1)^{2}}{x(2-x)}$.
Pour tout $x \in E_{f}$ et différent de $1, \varphi^{\prime}(x)>0$. La fonction φ est strictement croissante sur E_{f}. Comme (T) est la tangente à (C) au point d'abscisse 1 , on a : $\varphi(1)=0$.
Si $0<x<1$ alors $\varphi(x)<0$ et si $1<x<2$ alors $\varphi(x)>0$. Conclusion :

- Sur $] 0 ; 1[$, la courbe (C) est en dessous de la droite (T).
- Sur $\mid 1 ; 2\{$, la courbe (C) est aur dessus de la droite (T).

Remarque : le point de coordonnée (1,0) est un point d'inflexion (la courbe traverse la tangente).
5. $\lim _{x \rightarrow 0^{+}} f(x)=-\infty$ et $\lim _{x \rightarrow 2^{-}} f(x)=+\infty$ donc les droites d'équations $x=0$ et $x=2$ sont des asymptotes verticales à la courbe (C).

x	0	1		2	
$f^{\prime}(x)$		+	0	+	

\checkmark Position relative de la courbe et d'une asymptote

Exercice 70.

Solution

Pour tout x de $]-\infty ; 0[\bigcup] 1 ;+\infty[$,

$$
f(x)=-\frac{x}{2}+\ln \left(\frac{x-1}{x}\right)=-\frac{x}{2}+\ln \left(1-\frac{1}{x}\right) .
$$

On utilise le théorème des sur la limite d'une fonction composée.
$\lim _{x \rightarrow-\infty}\left(1-\frac{1}{x}\right)=1$ et $\lim _{X \rightarrow 1} \ln (X)=0$ (car \ln est continue en 1) donc $\lim _{x \rightarrow-\infty} \ln \left(1-\frac{1}{x}\right)=0$. De même $\lim _{x \rightarrow+\infty} \ln \left(1-\frac{1}{x}\right)=0$.
On pose : $\varphi(x)=\ln \left(1-\frac{1}{x}\right) . \quad$ On a $\quad f(x)=-\frac{x}{2}+\varphi(x) \quad$ avec $\lim _{x \rightarrow-\infty} \varphi(x)=0$ et $\lim _{x \rightarrow+\infty} \varphi(x)=0$. La droite (D) d'équation $y=-\frac{x}{2}$
est une asymptote oblique de (C) au voisinage de $-\infty$ et de $+\infty$.
La position relative de (C), et (D) s'obtient en étudiant le signe de $\varphi(x)$.

- Si $x \in \mid-\infty ; 0\left[\right.$ alors $1-\frac{1}{x}>1$ donc $\varphi(x)>0$. (C) est au dessus de (D) sur $\mid-\infty ; 0[$.
- Si $x \in] 1 ;+\infty\left[\right.$ alors $1-\frac{1}{x}<1$ donc $\varphi(x)<0$. (C) est en dessous de (D) sur $\mid 1 ;+\infty[$.

VII. Suites et logarithmes

Exercice 71.**

Solit f la innction definie par $t(x)=\frac{\ln (a)}{r}$ pout $t:$,

1. Galenler $f^{\prime}(x)$ et $f^{\prime}(x)$
2. Pour tout n de N. on note for la debriver dordre it de f Momtrer par resurrence que poul tout entier Ean fel gue: $n: 1$.

 $x_{i+1}=(r+1) 4$

Solution

1. f est dérivable sur $] 0 ;+\infty\left[\right.$ et $f^{\prime}(x)=\frac{\frac{x}{x}-\ln (x)}{x^{2}}=\frac{1-\ln (x)}{x^{2}}$. f^{\prime} est dérivable sur $] 0 ;+\infty[$. Pour tout x appartenant à $] 0 ;+\infty[$, $f^{\prime \prime}(x)=\frac{-\frac{x^{2}}{x}-2 x(1-\ln (x))}{x^{4}}=\frac{-3+2 \ln (x)}{x^{3}}$.
2. On pose $u_{1}=1$ et $v_{1}=-1$ et, pour tout $n \geq 1$,
$u_{n+1}=v_{n}-(n+1) u_{n}$ et $v_{n+1}=-(n+1) v_{n}$.

Notons $\cdot P_{n}$ la proposition : $<\cdot f^{(n)}(x)=\frac{u_{n}+v_{n} \ln (x)}{x^{n+1}}$ ».
$f^{\prime}(x)=\frac{1-\ln (x)}{x^{2}}=\frac{u_{1}+v_{1} \ln \left(x^{x}\right)}{x^{1+1}}$ donc P_{1} est vraie.
Soit n un entier naturel non nul. On suppose que P_{n} est vraie.
Pour tout x appartenant à $] 0 ;+\infty\left[, f^{(n)}(x)=\frac{u_{n}+v_{n} \ln (x)}{x^{n+1}}\right.$ donc $f^{(n)}$ est dérivable sur $] 0 ;+\infty[$ et on a :
$f^{(n+1)}(x)=\frac{v_{n} \frac{x^{n+1}}{x^{-}}-(n+1) x^{n}\left(u_{n}+v_{n} \ln (x)\right)}{\left(x^{n+1}\right)^{2}}$.
$f^{(n+1)}(x)=\frac{v_{n} x^{n}-(n+1) x^{n} u_{n}-(n+1) x^{n} v_{n} \ln (x)}{x^{2 n+2}}$:
$f^{(n+1)}(x)=\frac{v_{n}-(n+1) u_{n}-(n+1) v_{n} \ln (x)}{x^{n+2}}$.
Comme $u_{n+1}=v_{n}-(n+1) v_{n}$ et $v_{n+1}=-(n+1) v_{n}$, on a $f^{(n+1)}(x)=\frac{u_{n+1}+v_{n+1} \ln (x)}{x^{n+2}}$ et P_{n+1} est vraie.
La proposition P_{n} est vraie aú rang 1 et est héréditaire, elle est donc vraie pour tout entier $n \geq 1$. Pour tout $n \geq 1, f^{(n)}(x)=\frac{u_{n}+v_{n} \ln (x)}{x^{n+1}}$.
3. \cdots Pour tout entier naturel non nul n, on note P_{n} la proposition : $<v_{n}=(-1)^{n} \times n!$ 》.
$(-1)^{1} \times 1!=-1=v_{1}$ donc P_{1} est vraie.
On suppose que P_{n} est vraie, c'est-à-dire $v_{n}=(-1)^{n} \times n!$.
$v_{n+1}=-(n+1) v_{n}=-(n+1) \times(-1)^{n} \times n!=(-1)^{n+1} \times(n+1)!$
donc P_{n+1} est vraie.
P_{n} est vraie au rang 1 et est héréditaire, elle est donc vraie pour tout entier $n \geq 1$. Pour $n \geq 1, v_{n}=(-1)^{n} \times n$.
On a donc $u_{n+1}=(-1)^{n} \times n!-(n+1) u_{n}$.
Pour tout entier naturel non nul n, on note P_{n} la proposition : $《 u_{n}=(-1)^{n+1} \times n!\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right) »$. $(-1)^{2} \times 1!\times 1=1=u_{1}$ donc P_{1} est vraie.

Soit n un entier naturel non nul. On suppose que P_{n} est vraie, c'est-àdire que $u_{n}=(-1)^{n+1} \times n!\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)$. $u_{n+1}=(-1)^{n} n!-(n+1) u_{n}$.
$u_{n+1}=(-1)^{n} n!-(n+1)\left[(-1)^{n+1} \times n!\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)\right]$.
$u_{n+1}=(-1)^{n+2} n!+(-1)^{n+2} \times(n+1)!\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)$.
$u_{n+1}=(-1)^{n+2} \times(n+1)!\left(1+\frac{1}{2}+\ldots+\frac{1}{n}+\frac{1}{n+1}\right)$. Donc P_{n+1} est vraie.
P_{n} est vraie au rang 1 et est héréditaire, elle est donc vraie pour tout
entier $n \geq 1$. Pour tout $n \geq 1, u_{n}=(-1)^{n+1} \times n!\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)$.

Exercice 72.**

 representaitive de f_{h}, dint in repere $(0, i, h)$ orfloponad (umike:

 $I_{t}=\int_{i} f_{r}()_{r}$

 4. Ena ithlisant Ia gues ion is. Dentiret par vecurence gue pour tout

 pour topt entier natimel ion milat. $0 \leqslant T_{h} \leqslant 1$.
6. Endeduire $\lim _{n \rightarrow+\infty}\left(\frac{1}{1}, \frac{1}{21}=\frac{1}{n n}\right)$

Solution

1. $\quad F(x)=\frac{1+\ln (x)}{x}$ donc $F^{\prime}(x)=\frac{1-1-\ln (x)}{x^{2}}=-\frac{\ln (x)}{x^{2}}$.

On peut remarquer que $F^{\prime}(x)=-f_{1}(x)$ donc
$I_{1}=\int_{1}^{e} \frac{\ln (x)}{x^{2}} \mathrm{~d} x=[-F(x)]_{1}^{e}=-F(e)+F(1)=1-\frac{2}{e}$.
2. $I_{n+1}=\int_{\hat{1}}^{e} \frac{\ln ^{n+1}(x)}{x^{2}} \mathrm{~d} x$. On pose $u(x)=\ln ^{n+1}(x)$ et $v(x)=-\frac{1}{x}$. Ces deux fonctions sont dérivables sur $[1 ; e]$. On a $u^{\prime}(x)=(n+1) \frac{\ln ^{n}(x)}{x}$ et $v^{\prime}(x)=\frac{1}{x^{2}} \cdot u^{\prime}$ et v^{\prime} sont continues sur $[1 ; e]$ donc, en utilisant une intégration par parties, on a:

$$
\begin{gathered}
I_{n+1}=\int_{1}^{e} \frac{\ln ^{n+1}(x)}{x^{2}} \mathrm{~d} x=\left[-\frac{\ln ^{n+1}(x)}{x}\right]_{1}^{e}+(n+1) \int_{1}^{e} \frac{\ln ^{n}(x)}{x^{2}} \mathrm{~d} x . \\
I_{n+1}=-\frac{1}{e}+(n+1) I_{n} .
\end{gathered}
$$

3. $I_{2}=-\frac{1}{e}+2 I_{1}=-\frac{1}{e}+2-\frac{4}{2}=2-\frac{5}{e}$: Pour tout x appartenant à $[1 ; e], f_{1}(x)-f_{2}(x)=\frac{\ln (x)}{x^{2}}-\frac{\ln ^{2}(x)}{x^{2}}=\frac{(1-\ln (x)) \ln (x)}{x^{2}}$.
$(1 \leq x \leq e) \Rightarrow(0 \leq \ln (x) \leq 1) \Rightarrow\left(f_{1}(x)-f_{2}(x) \geq 0\right)$.
$\int_{1}^{e}\left(f_{1}(x)-f_{2}(x)\right) \mathrm{d} x=\int_{1}^{e} f_{1}(x) \mathrm{d} x-\int_{1}^{e} f_{2}(x) \mathrm{d} x=I_{1}-I_{2}=\frac{3}{e}-1>0$.
$1 u . a=20 \mathrm{~cm}^{2}$. L'aire, en cm^{2}, du domaine compris entre les courbes C_{1}, C_{2} et les droites d'équations $x=1$ et $x=e$ est :

$$
A=20\left(\frac{3}{e}-1\right) \mathrm{cm}^{2} .
$$

4. Pour tout entier naturel non nul n, on note $P(n)$ la proposition :

$$
<\frac{1}{n!} I_{n}=1-\frac{1}{e}\left(1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right) » .
$$

Comme $1!=1$ et $I_{1}=1-\frac{2}{e}, P(1)$ est vraie.
Supposons, pour un certain entier naturel non nul n, que $P(n)$ soit vraie. D'après la question $2, I_{n+1}=-\frac{1}{e}+(n+1) I_{n}$ donc

$$
\begin{aligned}
& \frac{1}{(n+1)!} I_{n+1}=-\frac{1}{(n+1)!e}+\frac{1}{n!} I_{n} . \\
& \frac{1}{(n+1)!} I_{n+1}=1-\frac{1}{e}\left(1+\frac{1}{1!}+\ldots+\frac{1}{n!}+\frac{1}{(n+1)!}\right) .
\end{aligned}
$$

Ainsi, $P(n+1)$ est vraie. D'après le principe de récurrence, la proposition $P(n)$ est vraie pour tout entier naturel non nul.

$$
\frac{1}{n!} I_{n}=1-\frac{1}{e}\left(1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)
$$

5. Pour tout x appartenant à $[1 ; e]$, on a :
$(1 \leq x \leq e) \Rightarrow(0 \leq \ln (x) \leq 1) \Rightarrow\left(0 \leq \ln ^{n}(x) \leq 1\right) \Rightarrow\left(0 \leq \frac{\ln ^{n}(x)}{x^{2}} \leq \frac{1}{x^{2}}\right)$
donc $0 \leq \int_{1}^{e} f_{n}(x) \mathrm{d} x \leq \int_{1}^{e} \frac{1}{x^{2}} \mathrm{~d} x$.
Comme $\int_{1}^{e} \frac{1}{x^{2}} \mathrm{~d} x=\left[-\frac{1}{x}\right]_{1}^{e}=1-\frac{1}{e}<1$, on a $0 \leq I_{n} \leq 1$.
6. D'après la question précédente, on a $0 \leq I_{n} \leq 1$.

Ainsi, $0 \leq \frac{1}{n!} I_{n} \leq \frac{1}{n!} \leq \frac{1}{n}$. Or $\lim _{n \rightarrow+\infty} \frac{1}{n}=0$ donc, d'après le théorème des gendarmes, on a $\lim _{x \rightarrow+\infty \cdot n!} \frac{1}{n!} I_{n}=0$.
Comme $1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}=e\left(1-\frac{1}{n!} I_{n}\right)$, on en déduit que :

$$
\lim _{n \rightarrow+\infty}\left(1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}\right)=e .
$$

VII. Primitives et logarithme

Exercice 73.

Solution

1. f est une fonction rationnelle, qui est définie sur $I=]-\infty ; 1[$ Elle est continue sur I donc f admet des primitives sur I.
2. Pour tout $x \in I$, on a $x-1<0$. Si on pose $u(x)=1-x$ alors $u(x)>0$ et $f(x)=\frac{-1}{1-x}=\frac{u^{\prime}(x)}{u(x)}$. On en déduit qu'une primitive de la fonction f sur I est la fonction F, définie par: $F(x)=\ln (1-x)$.

Exercice 74.

Solution

1. La fonction f est une fonction rationnelle qui est définie sur $]-\infty ; \frac{1}{5}[\cup] \frac{1}{5} ;+\infty[$. Elle est continue sur I donc f admet des primitives sur I.
2. Pour tout $x \in I$, on a $5 x-1>0$. Si on pose $u(x)=5 x-1$ alors $u(x)>0$ et $f(x)=\frac{1}{5} \times \frac{5}{5 x-1}=\frac{1}{5} \times \frac{u^{\prime} \cdot(x)}{u(x)}$. On en déduit qu'une primitive de la fonction f sur I est la fonction F, définie par : $F(x)=\frac{1}{5} \ln (5 x-1)$.

Exercice 75.

Solution

1. La fonction f est une fonction rationnelle qui est définie sur $\int-\infty ; \frac{7}{4}[\cup] \frac{7}{4} ;+\infty[$. Elle est continue sur I donc f admet des primitives sur I.
2. Pour tout $x \in I, 0 \leq x \leq 1$ donc $-7 \leq 4 x-7 \leq-3$. Si on pose
$u(x)=7-4 x$ alors $u(x)>0$ et $f(x)=\frac{1}{4} \times \frac{-4}{7-4 x}=\frac{1}{4} \times \frac{u^{\prime}(x)}{u(x)}$.
On en déduit qu'une primitive de la fonction f sur I est la fonction F, définie par : $F(x)=\frac{1}{4} \ln (7-4 x)$.

Exercice 76.

Solution

1. Sur $I=[2 ;+\infty[$, la fonction f est une fonction rationnelle donc elle est continue sur I et admet des primitives sur I.
2. Pour tout $x \in I, x \geq 2$ donc $x^{3}-3 \geq 5$. Si on pose $u(x)=x^{3}-3$ alors $u(x)>0$ et $u^{\prime}(x)=3 x^{2}$. donc $f(x)=\frac{u^{\prime}(x)}{u(x)}$.
Oñ en déduit qu'une primitive de la fonction f sur I est la fonction \vec{F}, définie par: $F(x)=\ln \left(x^{3}-3\right)$.

Exercice 7%.

 1. Determiner lensenble de defintioti de f priz																

Solution

1. On a $x^{3}+x^{2}-x+2=(x+2)\left(x^{2}-x+1\right)$ où $x^{2}-x+1$ est un trinôme du second degré dont le discriminant est strictement négatif (-3). Pour tout réel $x, x^{2}-x+1>0$. L'ensemble de définition de f est donc

$$
\left.E_{f}=\right]-\infty ;-2[\cup]-2 ;+\infty
$$

2. Sur $I=]-\infty ;-2[$, la fonction rationnelle f est continue, elle
admet donc des primitives.
3. Pour tout $x \in I, x+2<0$ et $x^{2}-x+1>0$ donc $x^{3}+x^{2}-x+2<0$. Si on pose $u(x)=-x^{3}-x^{2}+x-2$ alors $u(x)>0$ et $u^{\prime}(x)=-3 x^{2}-2 x+1$ donc $f(x)=\frac{u^{\prime}(x)}{u(x)}$.
On en déduit qu'une primitive de la fonction f sur I est la fonction F, définie par: $F(x)=\ln \left(-x^{3}-x^{2}+x-2\right)$.

Exercice 78.

Solution

1. Pour tout $x \in I$, on a $\frac{\sqrt{2}}{2} \leq \sin (x) \leq 1$ donc f est bien définie sur l'intervalle I. De plus, f, quotient de deux fonctions continues sur I, est continue sur I. On en déduit que f admet des primitives sur I.
2. Pour tout $x \in\left[\frac{\pi}{4} ; \frac{\pi}{2}\right]$, on a $\sin (x)>0$ et $\sin ^{\prime}(x)=\cos (x)$.

Une primitive de f sur $I=\left[\frac{\pi}{4} ; \frac{\pi}{2}\right]$ est la fonction F définie par :

$$
F(x)=\ln (\sin (x)) \text {. }
$$

Exercice 79.

Solution

1. On sait que la fonction tangente est continue sur $]-\frac{\pi}{2} ; \frac{\pi}{2}[$, elle est donc continue sur $I=\left[-\frac{\pi}{4} ; \frac{\pi}{4}\right]$ et admet des primitives sur I.
2. $f(x)=\frac{\sin (x)}{\cos (x)}$. Pour tout $x \in I, \cos (x)>0$ et $\cos ^{\prime}(x)=-\sin (x)$ donc $f(x)=-\frac{\cos ^{\prime}(x)}{\cos (x)}$. Une primitive de f sur I est donc la fonction F définie par: $F(x)=-\ln (\cos (x))=\ln \left(\frac{1}{\cos (x)}\right)$.

Exercice 80.*

Solution

1. Pour tout x appartenant à I, on a $-\frac{\sqrt{2}}{2}<\sin (x)<\frac{\sqrt{2}}{2}$ et $\frac{\sqrt{2}}{2}<\cos (x) \leq 1$ donc $-\frac{2+\sqrt{2}}{2}<\sin (x)-\cos (x)<0$.
La fonction f est un quotient de deux fonctions continues sur I; son dénominateur ne s'annulant pas sur. I, on en déduit la continuité de f et l'existence de primitives de f sur I.
2. Pour tout $x \in]-\frac{\pi}{4} ; \frac{\pi}{4}[$, on pose $u(x)=\cos (x)-\sin (x)$.

On a $u(x)>0$. et $u^{\prime}(x)=-\sin (x)-\cos (x)$ donc $f(x)=\frac{u^{\prime}(x)}{u(x)}$.
Une primitive de la fonction f sur I est donc la fonction F définie par : $F(x)=\ln (u(x))=\ln (\cos (x)-\sin (x))$.

Exercice 81.

Solution

1. La fonction f quotient de deux fonctions continues sur $\left|-\frac{\pi}{2} ; \frac{\pi}{2}\right|$,
$\cos ^{2}(x)$, ne s'annulant pas sur $]-\frac{\pi}{2} ; \frac{\pi}{2}[$, est continue sur $]-\frac{\pi}{2} ; \frac{\pi}{2}[$.
2. Pour tout $x \in]-\frac{\pi}{2} ; \frac{\pi}{2}[$, on pose $u(x)=\cos (x)$ d'où $u^{\prime}(x)=-\sin (x) . f(x)$ s'écrit alors $f(x)=-\frac{u^{\prime}(x)}{u(x)^{2}}$. Donc une primitive de f sur I, est la fonction F définie par: $F(x)=\frac{1}{\cos (x)}$.

Exercice 82.

Solution

1. La fonction $x \mapsto x \ln (x)$ est continue sur $I=] 1 ;+\infty[$ et ne s'annule jamais sur cet intervalle. La fonction f est donc continue sur I et elle admet des primitives sur I.
2. Pour tout $x \in I$, si on pose $u(x)=\ln (x)$ alors $u(x)>0$ et $u^{\prime}(x)=\frac{1}{x}$. On peut donc écrire $f(x)=\frac{1}{x \ln (x)}=\frac{\frac{1}{x}}{\ln (x)}=\frac{u^{\prime}(x)}{u(x)}$ et une primitive de f sur I, est la fonction F définie par: $F(x)=\ln (\ln (x))$.

Exercice 83.

Solution

1. Pour $x>1$, on a $x-1>0,2 x+1>0$ et $(x+2)^{2}>0$ donc, sur $] 1 ;+\infty\left[, f(x)\right.$ est du signe du numérateur $5 x^{2}-16 x-16$.
$\Delta=24^{2}, \quad x_{1}=-\frac{4}{5}$ et $x_{1}=4$. Ainsi, $5 x^{2}-16 x-16$ est positif à
l'extérieur des racines et négatif à l'intérieur.
Si $x \in] 1 ; 4[$ alors $f(x)<0$ et si $x \in] 4 ;+\infty[$ alors $f(x)>0$.
2. Pour tout $x>1$, on a :

$$
\begin{aligned}
& \frac{a}{2 x+1}+\frac{b}{(x+2)^{2}}+\frac{c}{2(x-1)}= \\
& \frac{2 a(x-1)(x+2)^{2}+2 b(x-1)(2 x+1)+c(2 x+1)(x+2)^{2}}{2(x-1)(2 x+1)(x+2)^{2}}= \\
& \frac{2 a x^{3}+6 a x^{2}-8 a+4 b x^{2}-2 b x-2 b+2 c x^{3}+9 c x^{2}+12 c x+4 c}{2(x-1)(2 x+1)(x+2)^{2}}= \\
& \frac{(2 a+2 c) x^{3}+(6 a+4 b+9 c) x^{2}+(12 c-2 b) x-8 a-2 b+4 c}{2(x-1)(2 x+1)(x+2)^{2}}
\end{aligned}
$$

Par identification, on a $f(x)=\frac{a}{2 x+1}+\frac{b}{(x+2)^{2}}+\frac{c}{2(x-1)}$ si, et seulement si, $\left\{\begin{array}{l}2 a+2 c=0 \\ 6 a+4 b+9 c=5 \\ 12 c-2 b=-16 \\ -8 a-2 b+4 c=-16\end{array}\right.$.

$$
\left\{\begin{array} { l }
{ 2 a + 2 c = 0 } \\
{ 6 a + 4 b + 9 c = 5 } \\
{ 1 2 c - 2 b = - 1 6 } \\
{ - 8 a - 2 b + 4 c = - 1 6 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ a = - c } \\
{ 4 \overline { b } + 3 c = 5 } \\
{ 1 2 c - 2 b = - 1 6 } \\
{ 1 2 c - 2 b = - 1 6 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a=-c \\
b-6 c=8 \\
4 b+3 c=5
\end{array}\right.\right.\right.
$$

$$
\Leftrightarrow\left\{\begin{array} { l }
{ a = - c } \\
{ b = 6 c + 8 } \\
{ 3 2 + 2 4 c + 3 c = 5 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ a = - c } \\
{ b = 6 c + 8 } \\
{ 2 7 c = - 2 7 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a=1 \\
b=2 \\
c=-1
\end{array}\right.\right.\right.
$$

Ainsi, pour tout $x>1, f(x)=\frac{1}{2 x+1}+\frac{2}{(x+2)^{2}}-\frac{1}{2(x-1)}$
3. La fonction f, fonction rationnelle, est continue sur son ensemble de définition donc elle admet des primitives sur $] 1 ;+\infty[$.
$f(x)=\frac{1}{2} \times \frac{2}{2 x+1}-2 \times \frac{-1}{(x+2)^{2}}-\frac{1}{2} \times \frac{1}{(x-1)}$.
Pour $x>1$, on a $x-1>0$ et $2 x+1>0$.
En notant F une primitive de f sur $|1 ;+\infty|$, on a :
$F(x)=\frac{1}{2} \ln (2 x+1)-\frac{2}{x+2}-\frac{1}{2} \ln (x-1)+C$ où C est une constante.
$F(x)=\frac{1}{2} \ln \left(\frac{2 x+1}{x-1}\right)-\frac{2}{x+2}+C$.
$F(2)=\frac{\ln (5)-1}{2}$ implique $C=0$ donc $F(x)=\frac{1}{2} \ln \left(\frac{2 x+1}{x-1}\right)-\frac{2}{x+2}$.
4. $u_{n}=F(n)$ donc $u_{n}=\frac{1}{2} \ln \left(\frac{2 n+1}{n-1}\right)-\frac{2}{n+1}$.
5. La fonction F est une primitive de f sur $] 1 ;+\infty[$ donc, pour tout réel x appartenant à $] 1 ;+\infty\left[\right.$, on a $F^{\prime}(x)=f(x)$. D'après 1 , on sait que si $x \in] 4 ;+\infty[$ alors $f(x)>0$ donc F est strictement croissante sur $[4 ;+\infty[$. Pour tout $n \geq 4$, comme $n<n+1$, on a $F(n)<F(n+1)$, c'est-à-dire $u_{n}<u_{n+1}$. La suite $\left(u_{n}\right)_{n \geq 2}$ est strictement croissante à partir du rang 4.
6. On utilise le théorème sur la limite d'une fonction composée.
$\lim _{x \rightarrow+\infty} \frac{2 x+1}{x-1}=2$ et $\lim _{X \rightarrow 2} \ln (X)=2$ (car \ln est continue en 2) donc
$\lim _{x \rightarrow+\infty} \ln \left(\frac{2 x+1}{x-1}\right)=\ln (2)$. D'autre part, $\quad \lim _{x \rightarrow+\infty} \frac{-2}{x+2}=0$. donc $\lim _{x \rightarrow+\infty} F(x)=\frac{\ln (2)}{2}$ et $\lim _{n \rightarrow+\infty} u_{n}=\frac{\ln (2)}{2}$.

Exercice 84.

Solution

1. En posant $u(x)=\frac{x+1}{x-1}$ et $v(x)=\frac{x}{x^{2}-1}$, on a :
$f(x)=v(x)+\ln (u(x)) .(u(x)>0) \Leftrightarrow(x \in]-\infty ;-1[\cup] I ;+\infty[)$.
Comme la fonction v est définie pour tout réel différent de -1 et 1 , l'ensemble de définition de la fonction f est :

$$
\left.E_{f}=\right]-\infty ;-1[\cup] 1 ;+\infty[.
$$

- Il est clair que E_{f} est centré en 0 . Pour tout $x \in E_{f}$, $f(-x)=\frac{-x}{x^{2}-1}+\ln \left(\frac{-x+1}{-x-1}\right)=-\left[\frac{x}{x^{2}-1}+\ln \left(\frac{x+1}{x-1}\right)\right]=-f(x)$.
La fonction f est impaire.
Cela permet d'étudier f sur l'ensemble $E=\mid 1 ;+\infty[$.
- f est dérivable sur E_{f}. Pour tout $x>1, f^{\prime}(x)=v^{\prime}(x)+\frac{u^{\prime}(x)}{u(x)}$.
$f^{\prime}(x)=-\frac{x^{2}+1}{\left(x^{2}-1\right)^{2}}+\frac{-2}{(x-1)^{2}} \times \frac{x-1}{x+1}=-\frac{x^{2}+1}{\left(x^{2}-1\right)^{2}}+\frac{-2}{x^{2}-1}$.
$f^{\prime}(x)=\frac{-x^{2}-1+2 x^{2}+2}{\left(x^{2}-1\right)^{2}} \cdot f^{\prime}(x)=\frac{-3 x^{2}+1}{\left(x^{2}-1\right)^{2}}$.
Pour tout $x \in E, f^{\prime}(x)<0$. La fonction f est strictement décroissante sur E.
- $\lim _{x \rightarrow 1^{+}} u(x)=+\infty$ et $\lim _{X \rightarrow+\infty} \ln (X)=+\infty$ donc $\lim _{x \rightarrow 1^{+}} \ln (u(x))=+\infty$.
$\lim _{x \rightarrow 1^{+}} v(x)=+\infty$. Par conséquent, $\lim _{x \rightarrow 1^{+}}[v(x)+\ln (u(x))]=+\infty$.

$$
\lim _{x \rightarrow 1^{+}} f(x)=+\infty .
$$

$x=1$ est une équation d'une asymptote verticale à la courbe C.

- $\lim _{x \rightarrow+\infty} u(x)=1$ et $\lim _{X \rightarrow 1} \ln (X)=\ln (1)=0$ donc $\lim _{x \rightarrow+\infty} \ln (u(x))=0$.

De plus $\lim _{x \rightarrow+\infty} v(x)=0$. Par conséquent, $\lim _{x \rightarrow+\infty}[v(x)+\ln (u(x))]=0$.

$$
\lim _{x \rightarrow+\infty} f(x)=0 \text {. }
$$

$y=0$ est une équation d'une asymptote verticale à la courbe C.
2.

3. g. est dérivable sur $] 1 ;+\infty[$ et, pour tout x appartenant à $] 1 ;+\infty\left[, g^{\prime}(x)=\ln (x+1)+1-\ln (x-1)-1=\ln (x+1)-\ln (x-1)\right.$.

$$
g^{\prime}(x)=\ln \left(\frac{x+1}{x-1}\right) \text {. }
$$

g est une primitive de la fonction $x \mapsto \ln \left(\frac{x+1}{x-1}\right)$ sur $] 1 ;+\infty[$.
On pose, pour tout x appartenant à $] 1 ;+\infty\left[, w(x)=x^{2}-1\right.$.
$w(x)>0$ et $v(x)=\frac{x}{x^{2}-1}=\frac{1}{2} \times \frac{w^{\prime}(x)}{w(x)}$ donc une primitive de v sur $] 1 ;+\infty\left[\right.$ est la fonction V définie par $V(x)=\frac{1}{2} \ln \left(x^{2}-1\right)$.

Les primitives de la fonction f sur $] 1 ;+\infty[$ sont les fonctions définies sur $] 1 ;+\infty\left[\right.$ de la forme $x \mapsto V^{\prime}(x)+g(x)+K$ où K est une constante réelle.

$$
\begin{aligned}
& F(x)=\frac{1}{2} \ln \left(x^{2}-1\right)+(x+1) \ln (x+1)-(x-1) \ln (x-1)+K . \\
& F(x)=\frac{1}{2} \ln \left(x^{2}-1\right)+x \ln (x+1)+\ln (x+1)-x \ln (x-1)+\ln (x-1)+K \\
& F(x)=\frac{3}{2} \ln \left(x^{2}-1\right)+x \ln \left(\frac{x+1}{x-1}\right)+K .
\end{aligned}
$$

Pour déterminer la valeur de la constante K, on utilise $F(\sqrt{2})=0$.
$(F(\sqrt{2})=0) \Leftrightarrow\left(\frac{3}{2} \ln \left((\sqrt{2})^{2}-1\right)+\sqrt{2} \ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)+K=0\right)$.
$(F(\sqrt{2})=0) \Leftrightarrow\left(K=\sqrt{2} \ln \left(\frac{\sqrt{2}-1}{\sqrt{2}+1}\right)\right)$.
$(F(\sqrt{2})=0) \Leftrightarrow\left(K=\sqrt{2} \ln \left[(\sqrt{2}-1)^{2}\right]\right) \Leftrightarrow(K \doteq 2 \sqrt{2} \ln (\sqrt{2}-1))$.
Donc, pour tout $x \in] 1 ;+\infty[$;

$$
F(x)=\frac{3}{2} \ln \left(x^{2}-1\right)+x \ln \left(\frac{x+1}{x-1}\right)+2 \sqrt{2} \ln (\sqrt{2}-1) .
$$

VIII. Axe et centre de symétrie
\checkmark Axe de symétrie
Exercice 85.

Solution

1. Le discriminant de $2 x^{2}+8 x+9$ est -8 . Pour tout réel x,
$2 x^{2}+8 x+9>0$. Le discriminant de $2 x^{2}+8 x+6$ est 16 et ses racines sont -1 et -3 . D'après le théorème sur le signe du trinôme, on a: $2 x^{2}+8 x+6>0$ si, et seulement si, $\left.x \in\right]-\infty ;-3[\cup]-1 ;+\infty[$.
$\frac{2 x^{2}+8 x+6}{2 x^{2}+8 x+9}>0$ si, et seulement si, $\left.x \in\right]-\infty ;-3[\cup]-1 ;+\infty[$.

$$
\left.E_{f}=\right]-\infty ;-3[\cup]-1 ;+\infty
$$

2. E_{f} est centré en -2.
$\left(x \in E_{f}\right) \Leftrightarrow(x<-3$ ou $x>-1) \Leftrightarrow(-x>3$ ou $-x<1)$.
$\left(x \in E_{f}\right) \Leftrightarrow(-4-x>-1$ ou $-4-x<-3) \Leftrightarrow\left(-4-x \in E_{f}\right)$.
Pour tout x appartenant à E_{f},
$f(x)=\ln \left(\frac{2 x^{2}+8 x+9-3}{2 x^{2}+8 x+9}\right)=\ln \left(1-\frac{3}{2 x^{2}+8 x+9}\right)$.
$f(-4-x)=\ln \left(1-\frac{3}{2(-4-x)^{2}+8(-4-x)+9}\right)$.
$f(-4-x)=\ln \left(1-\frac{3}{2 x^{2}+16 x+32-32-8 x+9}\right)=\ln \left(1-\frac{3}{2 x^{2}+8 x+9}\right)$.
$f(-4-x)=f(x)$. La droite (Δ) d'équation $x=-2$ est un axe de symétrie de C_{f}.
3.

Exercice 86.

Solution

On a vu dans l'exercice précédent que : $\left.E_{f}=\right]-\infty ;-3[\cup]-1 ;+\infty$. On pose $\Omega(-2,0)$. On définit un nouveau repère $(\Omega, \vec{i}, \vec{j})$.
Soit (x, y) les coordonnées du point M dans l'ancien repère (O, \vec{i}, \vec{j}) et (X, Y) les coordonnées du point M dans le repère $(\Omega, \vec{i}, \vec{j})$.
On exploite la relation vectorielle $\overrightarrow{O M}=\overrightarrow{O \Omega}+\overrightarrow{\Omega M}$ pour obtenir :

$$
\left\{\begin{array}{l}
x=-2+X \\
y=Y
\end{array}\right.
$$

$(M(x, y) \in C) \Leftrightarrow\left(y=f(x)\right.$ et $\left.x \in E_{f}\right)$.
$(M(x, y) \in C) \Leftrightarrow\left(Y=f(X-2)\right.$ et $\left.-2+X \in E_{f}\right)$.
$(M(x, y) \in C) \Leftrightarrow\binom{Y=\ln \left(\frac{2(X-2)^{2}+8(X-2)+6}{2(X-2)^{2}+8(X-2)+9}\right)}{$ et $X \in]-\infty ;-1[\cup \mid 1 ;+\infty[}$.
$(M(x, y) \in C) \Leftrightarrow\left(Y=\ln \left(\frac{2 X^{2}-2}{2 X^{2}+1}\right)\right.$ et $\left.X \in\right]-\infty ;-1[\cup] ;+\infty[)$.
On définit la fonction g sur $]-\infty ;-1[\bigcup] 1 ;+\infty[$ par $g(x)=\ln \left(\frac{2 x^{2}-2}{2 x^{2}+1}\right)$. On note $\left.E_{g}=\right]-\infty ;-1[\cup] 1 ;+\infty[$.
E_{g} est centré en 0 et, pour tout x appartenant à $E_{g}, g(-x)=g(x)$.
La fonction g est paire. Le graphe de la fonction g admet l'axe des ordonnées, dans le repère $(\Omega, \vec{i}, \vec{j})$, comme axe de symétrie. Une
équation de cet axe est $X=0$ dans $(\Omega, \vec{i}, \vec{j})$ et $x=-2$ dans $(0, \vec{i}, \vec{j})$.
\checkmark Centre de symétrie

Exercice 87.

Solution

1. Soit $(\Omega, \vec{i}, \vec{j})$ Ie nouveau repère. On a $\Omega\left(\frac{1}{2},-\frac{1}{4}\right)$ dans (O, \vec{i}, \vec{j}).

On note (x, y) les coordonnées de M dans le repère (O, \vec{i}, \vec{j}) et (X, Y) les coordonnées de M dans le repère $(\Omega, \vec{i}, \vec{j})$.
$(\overrightarrow{O M}=\overrightarrow{O \Omega}+\overrightarrow{\Omega M}) \Leftrightarrow\left(\vec{i}+y \vec{j}=\frac{1}{2} \vec{i}-\frac{1}{4} \vec{j}+X \vec{i}+Y \vec{j}\right)$.
$(\overrightarrow{O M}=\overrightarrow{O \Omega}+\overrightarrow{\Omega M}) \Leftrightarrow\left(x \vec{i}+y \vec{j}=\left(X+\frac{1}{2}\right) \vec{i}+\left(Y-\frac{1}{4}\right) \vec{j}\right)$.
$(\overrightarrow{O M}=\overrightarrow{O \Omega}+\overrightarrow{\Omega M}) \Leftrightarrow\left(\left[\begin{array}{l}x=X+\frac{1}{2} \\ y=Y-\frac{1}{4}\end{array}\right)\right.$.
$(M \in C) \Leftrightarrow\left(y=f(x)\right.$ et $\left.x \in E_{f}\right)$.
$(M \in C) \Leftrightarrow\left(Y-\frac{1}{4}=f\left(X+\frac{1}{2}\right)\right.$ et $\left.X+\frac{1}{2} \in E_{f}\right)$.
$(M \in C) \Leftrightarrow\left(\begin{array}{l}Y-\frac{1}{4}=\ln \left(\frac{X+\frac{1}{2}-1}{X+\frac{1}{2}}\right)-\frac{X+\frac{1}{2}}{2} \\ \text { et } X \in]-\infty ;-\frac{1}{2}\left(\cup \left\lvert\, \frac{1}{2}\right. ;+\infty[\right.\end{array}\right]$.
$(M \in C) \Leftrightarrow\left(Y=\ln \left(\frac{2 X-1}{2 X+1}\right)-\frac{2 X+1}{4}+\frac{1}{4}\right.$ et $\left.X \in\right]-\infty ;-\frac{1}{2}[\cup] \frac{1}{2} ;+\infty[)$.
$(M \in C) \Leftrightarrow\left(Y=\ln \left(\frac{2 X-1}{2 X+1}\right)-\frac{X}{2}\right.$ et $\left.X \in\right]-\infty ;-\frac{1}{2}[\cup] \frac{1}{2} ;+\infty[)$.
On pose, pour tout x appartenant à $\mid-\infty ;-\frac{1}{2}\left[\cup \left\lvert\, \frac{1}{2}\right. ;+\infty[\right.$, $g(x)=\ln \left(\frac{2 x-1}{2 x+1}\right)-\frac{x}{2}$. Notons $\left.E_{g}=\right]-\infty ;-\frac{1}{2}[\cup] \frac{1}{2} ;+\infty[$.
E_{g} est centré en 0 , c'est-à-dire si $x \in E_{g}$ alors $-x \in E_{g}$.
Pour tout x appartenant à $]-\infty ;-\frac{1}{2}[\cup] \frac{1}{2} ;+\infty[$, $g(-x)=\ln \left(\frac{-2 x-1}{-2 x+1}\right)-\frac{-x}{2}=\ln \left(\frac{2 x+1}{2 x-1}\right)+\frac{x}{2}=-\ln \left(\frac{2 x-1}{2 x+1}\right)+\frac{x}{2}$.
Finalement, $g(-x)=-g(x)$.
g est une fonction impaire donc Ω, origine du repère $(\Omega, \vec{i}, \vec{j})$, est un centre de symétrie de la courbe C.
2. La fonction f est continue et dérivable sur $]-\infty ; 0[\cup] 1 ;+\infty[$.

Pour tout $x \in]-\infty ; 0[U] 1 ;+\infty\left[, f^{\prime}(x)=\frac{1}{x(x-1)}-\frac{1}{2}\right.$.

$$
f^{\prime}(x)=\frac{(2-x)(x+1)}{2 x(x-1)} .
$$

Pour tout x appartenant à $]-\infty ; 0[\cup] 1 ;+\infty[, 2 x(x-1)>0$. Le signe de $f^{\prime}(x)$ est celui du trinôme $(2-x)(x+1)$.

- Si $x \in]-\infty ;-1\left[\right.$ alors $f^{\prime}(x)<0 . f$ est strictement décroissante sur $]-\infty ;-1[$.
- Si $x \in]-1 ; 0\left[\right.$ alors $f^{\prime}(x)>0 . f$ est strictement croissante sur]-1;0[.
- "'Si $x \in] 1 ; 2\left[\right.$ alors $f^{\prime}(x)>0 . f$ est strictement croissante sur |1;2[.
- Si $x \in] 2 ;+\infty\left[\right.$ alors $f^{\prime}(x)<0 . f$ est strictement décroissante sur $] 2 ;+\infty[$.

D'autre part, $\lim _{x \rightarrow-\infty} f(x)=+\infty, \lim _{x \rightarrow+\infty} f(x)=-\infty, \lim _{x \rightarrow 0^{-}} f(x)=+\infty$, $\lim _{x \rightarrow 1^{+}} f(x)=-\infty$. Les droites d'équations $x=0$ et $x=1$ sont des asymptotes verticales. De plus, il est facile de montrer que la droite d'équation $y=-\frac{x}{2}$ est une asymptote oblique $\left(\lim _{x \rightarrow+\infty}\left(f(x)-\left(-\frac{x}{2}\right)\right)=0\right.$ et $\lim _{x \rightarrow-\infty}\left(f(x)-\left(-\frac{x}{2}\right)\right)=0$).

Exercice 88.

Solution

- Méthode 1. Montrons que E_{f} est centré en $\frac{1}{2}$.
$\left(x \in E_{f}\right) \Leftrightarrow(x<0$ ou $x>1) \Leftrightarrow(-x>0$ ou $-x<-1)$.
$\left(x \in E_{f}\right) \Leftrightarrow(1-x>1$ ou $1-x<0) \Leftrightarrow\left((1-x) \in E_{f}\right)$.
Ainsi, E_{f} est centré en $\frac{1}{2}$. Pour tout réel x tel que $\frac{1}{2}+x \in E_{f}$,

$$
\begin{aligned}
& f\left(\frac{1}{2}+x\right)+f\left(\frac{1}{2}-x\right)=-\frac{\frac{1}{2}+x}{2}+\ln \left(\frac{\frac{1}{2}+x-1}{\frac{1}{2}+x}\right)-\frac{\frac{1}{2}-x}{2}+\ln \left(\frac{\frac{1}{2}-x-1}{\frac{1}{2}-x}\right) . \\
& f\left(\frac{1}{2}+x\right)+f\left(\frac{1}{2}-x\right)=-\frac{1+2 x}{4}+\ln \left(\frac{2 x-1}{2 x+1}\right)-\frac{1-2 x}{4}+\ln \left(\frac{-2 x-1}{1-2 x}\right) \\
& f\left(\frac{1}{2}+x\right)+f\left(\frac{1}{2}-x\right)=-\frac{1+2 x}{4}+\ln \left(\frac{2 x-1}{2 x+1}\right)-\frac{1-2 x}{4}-\ln \left(\frac{2 x-1}{1+2 x}\right) \\
& f\left(\frac{1}{2}+x\right)+f\left(\frac{1}{2}-x\right)=-\frac{1}{2} . \\
& \text { Donc } \Omega\left(\frac{1}{2},-\frac{1}{4}\right) \text { Iest centre de symétrie de la courbe } C .
\end{aligned}
$$

- Méthode 2.

Pour tout réel x appartenant à E_{f}, on a :
$f(1-x)+f(x)=-\frac{1-x}{2}+\ln \left(\frac{1-x-1}{1-x}\right)-\frac{x}{2}+\ln \left(\frac{x-1}{x}\right)$.
$f(1-x)+f(x)=-\frac{1-x+x}{2}+\ln \left(\frac{x}{x-1}\right)+\ln \left(\frac{x-1}{x}\right)$.
$f(1-x)+f(x)=-\frac{1}{2}$.
Donc $\Omega\left(\frac{1}{2} ;-\frac{1}{4}\right)$ est centre de symétrie de la courbe C.
IX. Logarithme décimal

Hxercice 89.***

 lecrinue ibeimule de ir.

1. Determiner eifewh
2. Fwaluer C (t) en loncting de loger:
3. D Determiner le momitre de unfic: des entiers suivants

Solution

1. $C(385243)=6$
$385243=3 \times 10^{5}+8 \times 10^{4}+5 \times 10^{3}+2 \times 10^{2}+4 \times 10^{1}+3 \times 10^{0}$.
$C(385243)=5+1=6$. Il n'y a donc aucun problème pour déterminer $C(n)$ si on connaît l'écriture décimale de n. Le but du problème est la détermination de $C(n)$ quand on ne connaît pas l'écriture décimale de n.
2. Soit n un entier naturel non nul.

Il existe $p+1$ entiers, $a_{0}, a_{1}, \ldots, a_{p}$ pris dans l'ensemble $[0 ; 9]$ tels que $a_{p} \neq 0$ et $n=a_{p} \times 10^{p}+a_{p-1} \times 10^{p-1}+\ldots+a_{1} \times 10^{1}+a_{0}$.
Il est clair que sous cette forme on a : $C(n)=p+1$
On peut écrire : $n=10^{p}\left(a_{p}+\frac{a_{p-1}}{10}+. .+\frac{a_{1}}{10^{p-1}}+\frac{a_{0}}{10^{p}}\right)=10^{p} \times N$.
$N=a_{p}+\frac{a_{p-1}}{10}+.+\frac{a_{1}}{10^{p-1}}+\frac{a_{0}}{10^{p}}$. Comme $a_{p} \neq 0$ on a $1 \leq N<10$.
Ainsi, $\log (1) \leq \log (N)<\log (10)$ c'est-à-dire $0 \leq \log (N)<1$.
$\log (n)=\log \left(10^{p} \times N\right)=\log \left(10^{p}\right)+\log (N)=p+\log (N)$.
On a $p \leq p+\log (N)<p+1$, c'est-à-dire $p \leq \log (n)<p+1$, et donc $E(\log (n))=p$
De (1) et (2) on déduit la relation $C(n)=E(\log (n))+1$.
3. Applications.

- $a=9^{\left(9^{9}\right)}$. Le nombre est trop grand pour qu'une calculatrice nous donne son $\operatorname{logarithme~décimal.~} \log (a)=9^{9} \log (9)$. La calculatrice nous donne $\quad 369693099,6<\log (a)<369693099,7$ donc $E(\log (a))=369693099$ et on a $C(a)=E(\log (a))+1=369693100$.
- $\quad b=11^{\left(9^{7}\right)}$.
$\log (b)=9^{7} \log (11)$ et $E(\log (b))=4980948$ donc $C(b)=4980949$.
- $c=2^{86242}\left(2^{86241}-1\right)$. Il est difficile d'évaluer $\log \left(2^{86241}-1\right)$.
$c=2^{86242}\left(2^{86241}-1\right)=2^{172483}-2^{86242}$.
On va montrer que $C(c)=C\left(2^{172483}\right)$.
$\log \left(2^{172483}\right)=172483 \times \log (2)$ et $\log \left(2^{86242}\right)=86242 \times \log (2)$.
$E\left(\log \left(2^{172483}\right)\right)=51922$ et $E\left(\log \left(2^{86242}\right)\right)=25961$.
Donc $C\left(2^{172483}\right)=51923$ et $C\left(2^{86242}\right)=25962$.
On soustrait un nombre de 25962 chiffres à un nombre de 51923
chiffres, le résultat est toujours un nombre de 51923 chiffres dans le cas où le chiffre le plus significatif du plus grand nombre est strictement plus grand que 1 . Détermination du chiffre le plus significatif de 2^{172483}. On a $51922.55 \leq 172483 \log (2)<51922.56$
donc $10^{51922} \times 10^{0.55}<2^{172483}<10^{51922} \times 10^{0.56}$
d'où $3.54 \times 10^{51922}<2^{172483}<3.64 \times 10^{51922}$.
Le chiffre le plus significatif de 2^{172483} est 3 donc

$$
C(c)=C\left(2^{172483}\right)=51923 .
$$

Exercice 90.

PI diwiesolution ayiewse:
lifecidite ritite solution. aquense wat. mestres Dat ion phl.
 H.
 $(\eta H=7) ?$
2. Si lo comonfation en imns. If@ est-multiplied pat 10 que dextent son ilf $^{\text {P }}$
3. Lad comentration (en mode),) d'une solition est compriae entre 01. (ablution tres acidet et 10.14 . Enhution tres basique . Wielles somt Ies wheure cxiremes diphtis

Solution

1. $(p H=7) \Leftrightarrow\left(-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=7\right) \Leftrightarrow\left(\frac{\ln \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)}{\ln (10)}=-7\right)$.
$(p H=7) \Leftrightarrow\left(\ln \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=\ln \left(10^{-7}\right)\right) \cdot p H=7 \Leftrightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-7}$.
2. On multiplie la concentration en ions $\mathrm{H}_{3} \mathrm{O}^{+}$par 10.
$-\log \left(10 \times\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\frac{\ln \left(10 \times\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)}{\ln (10)}=-\frac{\ln (10)}{\ln (10)}-\frac{\ln \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)}{\ln (10)}$
$-\log \left(10 \times\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-1-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$. Si la concentration en ions $\mathrm{H}_{3} \mathrm{O}^{+}$est multipliée par 10 alors le $p H$ est diminué de 1 .
3. Solution très acide :

$$
p H=-\log (0.1)=-\frac{\ln \left(10^{-1}\right)}{\ln (10)}=\frac{\ln (10)}{\ln (10)} \text { soit pH=1}
$$

Solution très basique :
$p H=-\log \left(10^{-14}\right)=-\frac{\ln \left(10^{-14}\right)}{\ln (10)}=14 \times \frac{\ln (10)}{\ln (10)}$ soit $p H=14$.
On obtient $1 \leq p H \leq 14$.

X. Problèmes

Exercice 91.
Etude de la fonction f refruie pr: $\left.f(x)=\frac{2}{2}+\ln \left(\frac{2 x}{x}\right) \right\rvert\,$ Sn note C. la combe representative te tha fouction t dans te repere orthonormé $(0, i, 3)$

1. Determiner lemeenibiede defmition, F_{f}, te la forction f.
2. Weterminer les limite de la fongtion. f aux borite do I_{1} :
3. Deduire de la questor pregenente a presence de deu: asymplotes Tha courbe C
4. Montre: gue C adinet mar arymptote ohlique, (1) guand x. temd wers $+\$$. et wera th. Doimer ine equition eartesiemme de la drite: (D). Bunderla position reatwe de la courtie G et de la dionte (D).
5. Determiner la deríco de la linimbion f.

6. Determiner les variationic de la loaction. f.
7. Dresser le tableavide varations de la fonction f

8. Tracer a wombe e, winai que ses a ymptotes ef sou wentre de synctrie

Solution

1. $\left(\frac{x-1}{x}>0\right) \Leftrightarrow(x \in]-\infty ; 0[\cup] I ;+\infty[)$.

$$
\left.E_{f}=\right]-\infty ; 0[\cup] 1 ;+\infty
$$

2. Limites de la fonction f en $+\infty$ et en $-\infty$.

On utilise le théorème sur la limite d'une fonction composée.

$$
\lim _{x \rightarrow \pm \infty}\left(1-\frac{1}{x}\right)=1 \text { et } \lim _{X \rightarrow 1} \ln (X)=\ln (1)=0 \quad(\text { car } \ln \text { continue en } 1) \text { donc }
$$

$$
\lim _{x \rightarrow \pm \infty} \ln \left(1-\frac{1}{x}\right)=0 . \lim _{x \rightarrow-\infty} f(x)=+\infty \text { et } \lim _{x \rightarrow+\infty} f(x)=-\infty
$$

- Limite de la fonction f en 0^{-}.

On utilise le théorème sur la limite d'une fonction composée.

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}}\left(1-\frac{1}{x}\right)=+\infty \text { et } \lim _{X \rightarrow+\infty} \ln (X)=+\infty \text { donc } \lim _{x \rightarrow 0^{-}} \ln \left(1-\frac{1}{x}\right)=+\infty \\
\lim _{x \rightarrow 0^{-}} f(x)=+\infty
\end{gathered}
$$

- Limite de la fonction f en 1^{+}.

On utilise le théorème sur la limite d'une fonction composée.

$$
\lim _{x \rightarrow 1^{+}}\left(1-\frac{1}{x}\right)=0^{+} \text {et } \lim _{X \rightarrow 0^{+}} \ln (X)=-\infty \text { donc } \lim _{x \rightarrow 1^{+}} \ln \left(1-\frac{1}{x}\right)=-\infty
$$

$$
\lim _{x \rightarrow 1^{+}} f(x)=-\infty
$$

3. On déduit de la question 2 que les droites d'équation $x=0$ et $x=1$. sont des asymptotes verticales à C.
4. Cette question est traitée dans l'exercice 70.
$\lim _{x \rightarrow \pm \infty} \ln \left(1-\frac{1}{x}\right)=0$ donc la droite (D), d'équation $y=-\frac{x}{2}$, est une asymptote oblique à la courbe C.
C est au dessus de (D) sur $]-\infty ; 0[$ et en dessous de (D) sur $\mid 1 ;+\infty[$.
5. La fonction f est dérivable sur son ensemble de définition E_{f}. Pour tout $x \in E_{f}$, on pose $u(x)=1-\frac{1}{x}$. On a $f(x)=-\frac{x}{2}+\ln (u(x))$ donc. $f^{\prime}(x)=-\frac{1}{2}+\frac{u^{\prime}(x)}{u(x)} \cdot f^{\prime}(x)=-\frac{1}{2}+\frac{1}{x(x-1)}=\frac{-x^{2}+x+2}{2 x(x-1)}$. Pour tout $x \in E_{f}$, on a $f^{\prime}(x)=\frac{(x+1)(2-x)}{2 x(x-1)}$.
6. Pour tout $x \in E_{f}, x(x-1)>0$, donc $2 x(x-1)>0$. Le signe de $f^{\prime}(x)$ est donçle même quesceluirude son numérateur, c'est-à-dire
$(x+1)(2-x)$. C'est un polynôme du second degré dont les racines sont -1 et 2 .

- Si $x \in]-\infty ;-1[\cup] 2 ;+\infty\left[\right.$ alors $f^{\prime}(x)<0$.
- Si $x \in]-1 ; 0[\cup] 1 ; 2\left[\right.$ alors $f^{\prime}(x)>0$.
- $f^{\prime}(-1)=f^{\prime}(2)=0$.

7. La question précédente permet de conclure.
f est strictement décroissante sur $]-\infty ;-1]$ et sur $[2 ;+\infty[$ et strictement croissante sur $[-1 ; 0[$ et sur $] 1 ; 2]$.
Remarque: La fonction f n'est pas strictement croissante sur $]-1 ; 0[\cup] 1: 2[$.
8. Tableau de variation de la fonction f.

9. Cette question est traitée dans les exercices 87 et 88 .

Donc le point $\Omega\left(\frac{1}{2},-\frac{1}{4}\right)$ est centre de symétrie de la courbe C.
10. Tracé de la courbe C.

Exercice 92.*

btude de la friction f dolme par $: \left.f(x)=\left|\frac{1}{|c|}\right| \frac{x}{2} \right\rvert\,=$ M mole C la courbe veme antative de la forietion f dans le teptre orthenome (025)

1. Deternitur ledeentle de definition, f_{F}, de la fonction f
2. Fichte firl sivan Ies wheure de x, sans raleur absolue
3. Deterniner le limites de la finction f aux bonde de E :
4. Deduire de la grestion precedente la prefuee de truts askiptotus a la courtie C
 harizonizle que loin imite (D)
5. Déterminer la deviée de la fonction f
6. Determinet le sgay de $f(x)$ pour thut $x \in E$, en dedyire lee Fariations di la fonetion:
7. Dre ser le tablear des yariaino de la tonction f.
 10. Triset la courbe C amasi gue ses asyintotes et aon contre de symetrie.

Solution

1. $\frac{x}{x-2}$ est définie pour tout $x \neq 2,\left|\frac{x}{x-2}\right|$ est strictement positif si, et seulement si, $x \neq 0$ et $x \neq 2$, donc $E_{f}=\mathbb{R}-\{0 ; 2\}$.
2. $\frac{x}{x-2}$ et $x(x-2)$ ont, sur $\mathbb{R}-\{0 ; 2\}$, le même signe.
$\left(\frac{x}{x-2}>0\right) \Leftrightarrow(x \in]-\infty ; 0[\cup] 2 ;+\infty[)$.
$\left.\left(\frac{x}{x-2}<0\right) \Leftrightarrow(x \in] 0 ; 2 \eta\right)$.

- Si $x \in]-\infty ; 0[U] 2 ;+\infty\left[\right.$ ailors $f(x)=\ln \left(\frac{x}{x-2}\right)$.
- Si $x \in] 0 ; 2\left[\right.$ alors $f(x)=\ln \left(\frac{-x}{x-2}\right)$.

3. $\lim _{x \rightarrow \pm \infty} \frac{x}{x-2}=1$ et $\lim _{X \rightarrow 1}|X|=1$ donc $\lim _{x \rightarrow \pm \infty}\left|\frac{x}{x-2}\right|=1$.
$\lim _{x \rightarrow \pm \infty}\left|\frac{x}{x-2}\right|=1$ et $\lim _{X \rightarrow 1} \ln (X)=\ln (1)=0$ donc $\lim _{x \rightarrow \pm \infty} \ln \left(\left|\frac{x}{x-2}\right|\right)=0$.
Conclusion : $\lim _{x \rightarrow-\infty} f(x)=0$ et $\lim _{x \rightarrow+\infty} f(x)=0$.
$\lim _{x \rightarrow 0}\left(\frac{x}{x-2}\right)=0$ et $\lim _{X \rightarrow 0}|X|=0^{+}$donc $\lim _{x \rightarrow 0}\left|\frac{x}{x-2}\right|=0^{+}$.
$\lim _{x \rightarrow 0}\left|\frac{x}{x-2}\right|=0^{+}$et $\lim _{X \rightarrow 0^{+}} \ln (X)=-\infty$ donc $\lim _{x \rightarrow 0} \ln \left(\left|\frac{x}{x-2}\right|\right)=-\infty$.
Conclusion : $\lim _{x \rightarrow 0} \ln \left(\left|\frac{x}{x-2}\right|\right)=-\infty$.
$\lim _{x \rightarrow 2^{+}}\left(\frac{x}{x-2}\right)=+\infty$ et $\lim _{x \rightarrow 2^{-}}\left(\frac{x}{x-2}\right)=-\infty$ donc $\lim _{x \rightarrow 2}\left|\frac{x}{x-2}\right|=+\infty$.
$\lim _{x \rightarrow 2}\left|\frac{x}{x-2}\right|=+\infty$ et $\lim _{x \rightarrow+\infty} \ln (X)=+\infty$ donc $\lim _{x \rightarrow 2} \ln \left(\left|\frac{x}{x-2}\right|\right)=+\infty$.
Conclusion: $\lim _{x \rightarrow 2} \ln \left(\left|\frac{x}{x-2}\right|\right)=+\infty$.
4. On déduit des limites précédentes que les droites d'équations $x=0$ et $x=2$ sont deux asymptotes verticales et que la droite (D), d'équation $y=0$, est une asymptote horizontale au voisinage de $+\infty$ et de $-\infty$.
5. La position relative de la courbe C et de la droite (D) s'obtient en étudiant le signe $\operatorname{de} f(x)$.
Pour tout x différent de 0 et 2 , on a :
$(f(x)>0) \Leftrightarrow\left(\left|\frac{x}{x-2}\right|>1\right)$.
$(f(x)>0) \Leftrightarrow\left(\frac{x}{x-2}>1\right.$ ou $\left.\frac{x}{x-2}<-1\right)$.
$(f(x)>0) \Leftrightarrow\left(\frac{x}{x-2}-1>0\right.$ ou $\left.\frac{x}{x-2}+1<0\right)$.
$(f(x)>0) \Leftrightarrow\left(\frac{2}{x-2}>0\right.$ ou $\left.\frac{2 x-2}{x-2}<0\right)$.
$(f(x)>0) \Leftrightarrow(x>2$ ou $2(x-1)(x-2)<0)$.
$f(x)>0 \Leftrightarrow(x \in] 2 ;+\infty \|)$ ou $(x \in] 1 ; 2[)$.
$(f(x)>0) \Leftrightarrow(x \in] 1 ; 2[\cup] 2 ;+\infty[)$.
De plus, $(f(x)=0) \Leftrightarrow\left(\left|\frac{x}{x-2}\right|=1\right) \Leftrightarrow\left(\frac{x}{x-2}=-1\right.$ ou $\left.\frac{x}{x-2}=1\right)$. $(f(x)=0) \Leftrightarrow(x=-x+2$ ou $x=x+2) \Leftrightarrow(x=1)$.
Conclusion :

- Sur $] 1 ; 2[U] 2 ;+\infty[, C$ est au dessus de (D).
- Sur $]-\infty ; 0[\cup] 0 ; 1[, C$ est en dessous de (D).
- La courbe C et la droite (D) se coupent au point d'abscisse 1 .

6. Pour $x \in]-\infty ; 0[\cup] 2 ;+\infty\left[\right.$, on sait que $f(x)=\ln \left(\frac{x}{x-2}\right)$.

On pose $u(x)=\frac{x}{x-2}$ donc $f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=-\frac{2}{(x-2)^{2}} \times \frac{x-2}{x}$.
Soit $f^{\prime}(x)=\frac{-2}{x(x-2)}$.
Pour $x \in] 0 ; 2\left[\right.$, on sait que $f(x)=\ln \left(\frac{-x}{x-2}\right)$.
On pose $u(x)=\frac{-x}{x-2}$ d'où $f^{\prime}(x)=\frac{u^{\prime}(x)}{u(x)}=\frac{2}{(x-2)^{2}} \times \frac{x-2}{-x}=\frac{-2}{x(x-2)}$.
Conclusion : pour tout $x \in E_{f}, f^{\prime}(x)=\frac{-2}{x(x-2)}$.
Remarque: on peut utiliser le théorème: si u est dérivable et ne s'annule pas sur I, alors la fonction $\ln |u|$ est dérivable et $(\ln \circ u)^{\prime}=\frac{u^{\prime}}{u}$.
7. Pour $x \in]-\infty ; 0[\bigcup] 2 ;+\infty\left[\right.$, on sait que $\frac{x}{x-2}>0$ donc $\frac{-2}{x(x-2)}<0$ et $f^{\prime}(x)<0$.
Pour $x \in] 0 ; 2\left[\right.$ on sait que $\frac{x}{x-2}<0$, donc $\frac{-2}{x(x-2)}>0$ et $f^{\prime}(x)>0$.
La fonction f est strictement décroissante sur $]-\infty ; 0[$ et sur $] 2 ;+\infty[$ La fonction f est strictement croissante sur $] 0 ; 2[$.
8. Tableau de variation de la fonction f.

x	$-\infty$	$\cdots 2$	
$f^{\prime}(x)$	-	+	-
f			

9. On va montrer que le point $\Omega(1,0)$ est un centre de symétrie de la courbe $C . E_{f}$ est centré en 1 .
$\left(x \in E_{f}\right) \Leftrightarrow(x \neq 0$ et $x \neq 2) \Leftrightarrow(-x \neq 0$ et $-x \neq-2)$.
$\left(x \in E_{f}\right) \Leftrightarrow(2-x \neq 2$ et $2-x \neq 0) \Leftrightarrow\left(2-x \in E_{f}\right)$.
Cette dernière équivalence prouve que l'ensemble de définition de la fonction f est centré en 1 .
Pour tout x appartenant à E_{f}, on a

$$
\begin{aligned}
& f(2-x)+f(x)=\ln \left(\left|\frac{2-x}{2-x-2}\right|\right)+\ln \left(\left|\frac{x}{x-2}\right|\right)=\ln \left(\left|\frac{x-2}{x}\right|\right)+\ln \left(\left|\frac{x}{x-2}\right|\right) . \\
& f(2-x)+f(x)=\ln \left(\left|\frac{x-2}{x} \| \frac{x}{x-2}\right|\right)=\ln (1)=0
\end{aligned}
$$

Le point $\Omega(1,0)$ est centre de symétrie de la courbe C.
10. Tracé de la courbe C.

Exercice 93.***

Pour tout $t=1 \$$, nt comidere k produit

$$
\left.P=\operatorname{li}^{1}+1\right)(1+1)(1(1, y)(1+4)
$$

1. Exprimer simplenient. I, ed fonction de n. En deduice la valent $\mathrm{de} Q_{n}=\ln (2)+\ln \left(\mathrm{l}+\frac{1}{2}\right)+\ln \left(\frac{1}{4}+\frac{1}{3}\right)+\sin \left(1+\frac{1}{n}\right)$

2. Pour tout entiet ti: 2 , ar jouse R.

Exprimer simplement ha en foriction de. t. En dedure la suleut de $\left.S_{i}=\ln \left(1, \frac{1}{2}\right)+\ln \left(1, \frac{1}{3}\right)\right)+\ln \left(1, \frac{1}{n}\right)$

3: Caluler l_, $\left.\ln \left(1, \frac{1}{2^{2}}\right)|\ln | 1, \frac{1}{3^{2}}\right)\left(. a \ln \left(1-n^{1}\right)\right.$
La suite $U_{n} J_{2}$ a t-olle unc limite ? Si ou, Ifmelle?

Solution

1. $P_{n}=(1+1)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)$.
$P_{1}=2, P_{2}=2 \times \frac{3}{2}=3, P_{3}=3 \times \frac{4}{3}=4$.
On peut conjecturer : $P_{n}=n+1$. Montrons-le par un raisonnement par récurrence. Pour tout entier naturel non nul n, on note $A(n)$ la proposition « $P_{n}=n+1 » . A(1)$ est vraie car $P_{1}=2$.
Soit n un entier naturel non nul. On suppose que $A(n)$ est vraie. $P_{n+1}=P_{n} \times\left(1+\frac{1}{n+1}\right)=(n+1)\left(\frac{n+1+1}{n+1}\right)=n+2$ donc la proposition $A(n+1)$ est vraie. La proposition $A(n)$ est vraie au rang I et est héréditaire, donc elle est vraie pour tout $n \in \mathbb{N}^{*}$.

$$
P_{n}=(1+1)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=n+1
$$

Pour tout $n \in \mathbb{N}^{*}$, on a : $Q_{n}=\ln \left(P_{n}\right)$ donc $Q_{n}=\ln (n+1)$.

$$
Q_{n}=\sum_{k=1}^{n} \ln \left(1+\frac{1}{k}\right)=\ln (n+1) \text {. }
$$

On a $\lim _{n \rightarrow+\infty}(n+1)=+\infty$ donc $\lim _{n \rightarrow+\infty} P_{n}=+\infty$.
$\lim _{n \rightarrow+\infty}(n+1)=+\infty$ et $\lim _{X \rightarrow+\infty} \ln (X)=+\infty$ donc $\lim _{n \rightarrow+\infty} \ln (n+1)=+\infty$ soit $\lim _{n \rightarrow+\infty} Q_{n}=+\infty$.
2. Pour tout entier $n \geq 2, R_{n}=\frac{1}{1-\frac{1}{2}} \times \frac{1}{1-\frac{1}{3}} \times \ldots \times \frac{1}{1-\frac{1}{n}}$.
$R_{2}=\frac{1}{1-\frac{1}{2}}=2, R_{3}=\frac{1}{\frac{1}{2} \times\left(1-\frac{1}{3}\right)}=3$. Il semble que $R_{n}=n$.
Montrons-le par un raisonnement par récurrence. On note pour tout entier $n \geq 2, B(n)$ la proposition 《 $R_{n}=n »$.
$B(2)$ est vraie car $R_{2}=2$.
Soit n un entier naturel supérieur ou égal à 2 . On suppose que $B(n)$ est vraie.
$R_{n+1}=R_{n} \times \frac{1}{1-\frac{1}{n+1}}=\frac{n}{\frac{n+1-1}{n+1}}=\frac{n}{\frac{n}{n+1}}=n+1$. Donc la proposition
$B(n+1)$ est vraie. $B(n)$ est vraie au rang 2 et elle est héréditaire, donc la proposition est vraie pour tout $n \geq 2$.
On a $\ln \left(R_{n}\right)=\sum_{k=2}^{n} \ln \left(\frac{1}{1-\frac{1}{k}}\right)=-\sum_{k=2}^{n} \ln \left(1-\frac{1}{k}\right)=-S_{n}$ donc

$$
S_{n}=\sum_{k=2}^{n} \ln \left(1-\frac{1}{k}\right)=-\ln (n) .
$$

Il est clair que $\lim _{n \rightarrow+\infty} R_{n}=+\infty$ et $\lim _{n \rightarrow+\infty} S_{n}=-\infty$.
3. On définit, pour tout entier naturel $n \geq 2$, la suite $\left(T_{n}\right)_{n \geq 2}$ par:

$$
T_{n}=\frac{1}{\left(1-\frac{1}{2^{2}}\right)} \times \frac{1}{\left(1-\frac{1}{3^{2}}\right)} \times \ldots \times \frac{1}{\left(1-\frac{1}{n^{2}}\right)}
$$

$$
T_{2}=\frac{1}{1-\frac{1}{4}}=\frac{4}{3}=\frac{2 \times 2}{2+1}, T_{3}=\frac{1}{\frac{3}{4}} \times \frac{1}{\left(1-\frac{1}{9}\right)}=\frac{1}{\frac{4}{6}}=\frac{6}{4}=\frac{2 \times 3}{3+1} .
$$

Il semble que $T_{n}=\frac{2 n}{n+1}$. Montrons-le par un raisonnement par récurrence. Notons, pour tout entier naturel n supérieur ou égal à 2 , $C(n)$ la proposition « $T_{n}=\frac{2 n}{n+1}$ ». $C(2)$ est vraie car $T_{2}=\frac{4}{3}$.
Soit n un entier naturel supérieur ou égal à 2 . On suppose que $C(n)$ est vraie.
$T_{n+1}=T_{n} \times \frac{1}{\left(1-\frac{1}{(n+1)^{2}}\right)}=\frac{1}{\frac{n+1}{2 n}} \times \frac{1}{\left(\frac{(n+1)^{2}-1}{(n+1)^{2}}\right)}=\frac{1}{\frac{(n+1)(n+2) n}{2 n(n+1)^{2}}}$.
$T_{n+1}=T_{n} \times \frac{1}{\left(1-\frac{1}{(n+1)^{2}}\right)}=\frac{2 n}{n+1} \times \frac{1}{\left(\frac{(n+1)^{2}-1}{(n+1)^{2}}\right)}=\frac{2 n(n+1)^{2}}{(n+1)(n+2) n}$.
$T_{n+1}=\frac{2(n+1)}{n+2}$ donc la proposition $C(n+1)$ est vraie. La proposition
$C(n)$ est vraie au rang 2 et est héréditaire, donc elle est vraie pour tout $n \geq 2$.
$U_{n}=-\ln \left(T_{n}\right)=-\ln \left(\frac{2 n}{n+1}\right)$ donc $U_{n}=\sum_{k=2}^{n} \ln \left(1-\frac{1}{k^{2}}\right)=-\ln \left(\frac{2 n}{n+1}\right)$.
$\lim _{n \rightarrow+\infty} \frac{2 n}{n+1}=2$ et $\lim _{X \rightarrow 2}(-\ln (X))=-\ln (2)$ donc
$\lim _{n \rightarrow+\infty}\left(-\ln \left(\frac{2 n}{n+1}\right)\right)=-\ln (2)$.
La suite $\left(U_{n}\right)_{n \geq 2}$ est convergente et $\lim _{n \rightarrow+\infty} U_{n}=-\ln (2)$.

Exercice 94.*

Solution

1. Les dérivées des trois fonctions sont $f^{\prime}(x)=\frac{1}{x}, g^{\prime}(x)=\frac{2}{x}$ et $h^{\prime}(x)=\frac{3}{x}$. Les fonctions f, g et h sont donc strictement croissantes sur $|0 ;+\infty|$.
2. Limites en 0 :

- $\lim _{x \rightarrow 0} \ln (x)=-\infty$ donc $\lim _{x \rightarrow 0} f(x)=-\infty$.
- $\lim _{x \rightarrow 0} x^{2}=0$ et $\lim _{X \rightarrow 0} \ln (X)=-\infty$ donc $\lim _{x \rightarrow 0} \ln \left(x^{2}\right)=-\infty$.

$$
\lim _{x \rightarrow 0} g(x)=-\infty
$$

- $\lim _{x \rightarrow 0} x^{3}=0$ et $\lim _{X \rightarrow 0} \ln (X)=-\infty$ donc $\lim _{x \rightarrow 0} \ln \left(x^{3}\right)=-\infty$.

$$
\lim _{x \rightarrow 0} h(x)=-\infty
$$

L'axe des ordonnées est donc une asymptote verticale pour les trois courbes.
Limites en $+\infty$:

- $\lim _{x \rightarrow+\infty} \ln (x)=+\infty$ donc $\lim _{x \rightarrow+\infty} f(x)=+\infty$.
- $\lim _{x \rightarrow+\infty} x^{2}=+\infty$ et $\lim _{x \rightarrow+\infty} \ln (X)=+\infty$ donc $\lim _{x \rightarrow+\infty} \ln \left(x^{2}\right)=+\infty$.

$$
\lim _{x \rightarrow+\infty} g(x)=+\infty .
$$

- $\lim _{x \rightarrow+\infty} x^{3}=+\infty$ et $\lim _{x \rightarrow+\infty} \ln (X)=+\infty$ donc $\lim _{x \rightarrow+\infty} \ln \left(x^{3}\right)=+\infty$.

$$
\lim _{x \rightarrow+\infty} h(x)=+\infty
$$

3. Les courbes C_{1}, C_{2} et C_{3}.

4. Soit s un réel strictement positif. Déterminons les équations des trois tangentes T_{1}, T_{2} et T_{3}.

- Tangente T_{1}. On a $f(s)=\ln (s)$ et: $f^{\prime}(s)=\frac{1}{s}$. Une équation de la tangente à C_{1} au point d'abscisse s est $y=\frac{1}{s} x-1+\ln (s)$.
- Tangente T_{2}. On a $g(s)=\ln \left(\dot{s}^{2}\right)=2 \ln (s)$ et $g^{\prime}(s)=\frac{2}{s}$. Une équation de la tangente à C_{2} au point d'abscisse s est $y=2\left(\frac{1}{s} x-1+\ln (s)\right)$.
- Tangente T_{3}. On a $h(s)=\ln \left(s^{3}\right)=3 \ln (s)$ et $h^{\prime}(s)=\frac{3}{s}$. Une équation de la tangente à C_{3} au point d'abscisse s est $y=3\left(\frac{1}{s} x-1+\ln (s)\right)$. Les trois tangentes ont des coefficients directeurs deux à deux différents, donc les trois tangentes sont deux à deux sécantes. Soit K l'intersection de T_{1} et T_{2}, l'abscisse de K vérifie l'équation: $\left(\frac{1}{s} x-1+\ln (s)=2\left(\frac{1}{s} \frac{x}{s}-1+\ln (s)\right)\right) \Leftrightarrow\left(\frac{1}{s} x-1+\ln (s)=0\right)$. $\left(\frac{1}{s} x-1+\ln (s)=2\left(\frac{1}{s} x-1+\ln (s)\right)\right) \Leftrightarrow x=s-s \ln (s)$.

Les coordonnées de K sont $(s-s \ln (s) ; 0)$. On montre facilement que K appartient à T_{3}. Les trois tangentes concourent en K.
Pour $s=5$ on a $5-5 \ln (5) \approx-3.04$.
5. On a $l(s)=\ln \left(s^{r}\right)=r \ln (s)$ et $l^{\prime}(s)=\frac{r}{s}$. Une équation de la tangente à C_{r} au point d'abscisse s est $y=r\left(\frac{1}{s} x-1+\ln (s)\right.$
On en déduit que le point K appartient à T_{r}.
Exercice 95.
Ie plyn ect muni d'um repere pribonome $(0, t, j)$, On considere la fonction numerigue f definie sur $\mathrm{P}, \mathrm{xit}\left(f(x)=\ln \left(x^{2}=2 x+2\right)\right.$ On note (r) sa courbe repré: entative tama $(0 ; t y)$
Protic I.

1. Dinthfier gue, pour tont r reel, $x^{2}=2 r \mid 200$
2. Determmer la lonction denvét f de I, et etudier le sens de variation do t sur F

3. Pepresenter (C) et la troite (D) didquition $y=r$. On mentrera
 phrerallespuint diabscise 0 et 2 sinsique les thagentes a hacourte crice poinls

Partie II:
 $r(d) \pm s(n)=f(r)=x$
 strictonent decroiss atite sir TiR:
2. Determinet la linite de f en

4. Montrer que la droite (D) coupe la courbe (C) en un point dlabscisse a vérifiant $0.3<a<0.4$

Solution

Partie I.

1. Le discriminant de $x^{2}-2 x+2$ est négatif (-4), donc ce polynôme est du signe du coefficient de x^{2}, c'est-à-dire positif. Donc, pour tout réel $x, x^{2}-2 x+2>0$.
2. $x \mapsto x^{2}-2 x+2$ est dérivable et strictement positive sur \mathbb{R}, donc

Comme $x^{2}-2 x+2>0, f^{\prime}(x)$ est du signe du numérateur.

x	$-\infty$	1	$+\infty$	
$f^{\prime}(x)$		-	0	+

f est donc strictement décroissante sur $[-\infty ; 1]$ et strictement croissante sur $[1 ;+\infty]$.
3. On pose $u(x)=x^{2}-2 x+2$. On a $f(x)=\ln (u(x))$.

Pour tout réel $x \neq 0, u(x)=x^{2}\left(1-\frac{2}{x}+\frac{2}{x^{2}}\right)$ donc $\lim _{x \rightarrow+\infty} u(x)=+\infty$. Or, $\lim _{x \rightarrow+\infty} \ln (x)=+\infty$ donc d'après le théorème sur la limite d'une fonction composée, on a $\lim _{x \rightarrow+\infty} f(x)=+\infty$. De même $\lim _{x \rightarrow-\infty} f(x)=+\infty$.
4. Soit $\Omega(1,0),(x, y)$ les coordonnées du point M dans l'ancien repère (O, \vec{i}, \vec{j}) et (X, Y) les coordonnées du point M dans le repère $(\Omega, \vec{i}, \vec{j})$. On a $\overrightarrow{O M}=\overrightarrow{O \Omega}+\overrightarrow{\Omega M}$.
Les vecteurs sont égaux, donc leurs coordonnées sont égales.
Les formules de changement de repère sont : $\left\{\begin{array}{l}x=1+X \\ y=Y\end{array}\right.$.
$(M \in(C)) \Leftrightarrow(y=f(x)$ et $x \in \mathbb{R})$.
$(M \in(C)) \Leftrightarrow\left(Y=\ln \left(1+X^{2}\right)\right.$ et $\left.X+1 \in \mathbb{R}\right)$.
$(M \in(C)) \Leftrightarrow(Y=g(X)$ et $X \in \mathbb{R})$ avec $g(x)=\ln \left(1+x^{2}\right)$.
L'ensemble de définition de g est \mathbb{R}, donc il est centré en 0 , de plus $g(-x)=\ln \left(1+(-x)^{2}\right)=\ln \left(1+x^{2}\right)=g(x)$. On en déduit que g est une fonction paire et que; par conséquent, la droite d'équation $x=1$ est un axe de symétrie de (C).

Partie II.

1. On a $\varphi^{\prime}(x)=f^{\prime}(x)-1=-\frac{x^{2}-4 x+4}{x^{2}-2 x+2}=-\frac{(x-2)^{2}}{x^{2}-2 x+2}$.
$\varphi^{\prime}(2)=0$ et, pour tout $x \neq 2, \varphi^{\prime}(x)<0$.
φ est strictement décroissante sur \mathbb{R}.
2. $\lim _{x \rightarrow-\infty} f(x)=+\infty$ et $\lim _{x \rightarrow-\infty}-x=+\infty$ donc $\lim _{x \rightarrow-\infty} \varphi(x)=+\infty$.
3. Pour tout réel $x>0$, on a
$\varphi(x)=f(x)-x=\ln \left(x^{2}-2 x+2\right)-x=\ln \left(x^{2}\left(1-\frac{2}{x}+\frac{2}{x^{2}}\right)\right)-x$.
$\varphi(x)=\ln \left(x^{2}\right)+\ln \left(1-\frac{2}{x}+\frac{2}{x^{2}}\right)-x=x\left(\frac{2 \ln (x)}{x}+\frac{\ln \left(1-\frac{2}{x}+\frac{2}{x^{2}}\right)}{x}-1\right)$.
$\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x}=0$ et $\lim _{x \rightarrow+\infty} \ln \left(1-\frac{2}{x}+\frac{2}{x^{2}}\right)=0$ donc $\lim _{x \rightarrow+\infty} \varphi(x)=-\infty$.
4. φ est continue et strictement décroissante sur $\left[\frac{3}{10} ; \frac{4}{10}\right], \varphi\left(\frac{4}{10}\right)<0$
et $\varphi\left(\frac{3}{10}\right)>0$ donc l'équation $\varphi(x)=0$ admet, dans $\left[\frac{3}{10} ; \frac{4}{10}\right]$,

une

 unique solution α. On a $(\varphi(\alpha)=0) \Leftrightarrow(f(\alpha)=\alpha)$. La droite coupe la courbe (C) en un point d'abscisse α vérifiant $0.3<\alpha<0.4$.
Exercice 96.

Soit fila fonction definit an $0: 4$ po par:

Ot rote (C) sa courly represertititi dafs un repere or liomotine

$$
\text { Bncadrement de } \ln (1, x) \text {. }
$$

 $\left.x=\frac{x}{2} \leqslant \ln (1)+x\right) \leqslant x(1)$

Etude d'uneJonclion ausibuatre.

4. Prouxer que, pour toul $x \& 0,0 \& g^{\prime}(x) \leqslant \frac{x^{2}}{4}$
 Btudies la fouction $x i$

$$
\text { Fes vimotions ite } f \text { t }
$$

 (2). en dedirire le sens de varistion de f

Bude de 1 aur bornce ite lintervalle de definition.

 dedurew que t est derivahe en (et calmer $f(0)$. Donner ume. equation de la tangente (T) a (et) au pant datscisse 0 et groce a (1). preciser la posilimo de. (S) par rippont a (T)
9. Dresser le tablean de Sariation de f pils temer la comilbe (A) el Is irvite (T)

Solution

1. Pour tout $x \geq 0,1-x-\frac{1}{1+x}=\frac{1-x^{2}-1}{1+x}=-\frac{x^{2}}{1+x} \leq 0$. On en déduit que $1-x \leq \frac{1}{1+x}$. De plus, $1-\frac{1}{1+x}=\frac{x}{1+x} \geq 0$.
Finalement, $1-x \leq \frac{1}{1+x} \leq 1$.
2. On pose $\phi: x \mapsto \ln (1+x)-x$. Pour tout $x \geq 0$, $\phi^{\prime}(x)=-\frac{x}{1+x} \leq 0$ donc ϕ est décroissante sur $[0 ;+\infty[$ et $\phi(0)=0$ donc ϕ. est négative ou nulle sur $[0 ;+\infty[$ d'où $\ln (1+x) \leq x$.
On pose $\psi: x \mapsto \ln (1+x)-x+\frac{x^{2}}{2}$. Pour tout $x \geq 0$, $\psi^{\prime}(x)=\frac{1}{1+x}-1+x$. En utilisant la question précédente, on a $\psi^{\prime}(x) \geq 0$ donc ψ est croissante sur $[0 ;+\infty[$ et $\psi(0)=0$. On en déduit que ψ est positive sur $\left[0 ;+\infty\left[\right.\right.$ d'où $x-\frac{x^{2}}{2} \leq \ln (1+x)$. Finalement, on a montré que $x-\frac{x^{2}}{2} \leq \ln (1+x) \leq x$.
3. g est manifestement dérivable et, pour tout $x \geq 0$,

$$
\begin{gathered}
g^{\prime}(x)=\frac{1}{1+x}-\frac{2(2+x)-2 x}{(2+x)^{2}}=\frac{1}{1+x}-\frac{4}{(2+x)^{2}} \text { soit } \\
g^{\prime}(x)=\frac{x^{2}}{(x+1)(x+2)^{2}} .
\end{gathered}
$$

4. Il est clair que $g^{\prime}(x) \geq 0$. De plus, $x \geq 0$ implique $x+1 \geq 1$ et $x+2 \geq 2$ d'où $(x+2)^{2} \geq 4$ et $(x+1)(x+2)^{2} \geq 4$ soit $g^{\prime}(x) \leq \frac{x^{2}}{4}$.
Finalement, $0 \leq g^{\prime}(x) \leq \frac{x^{2}}{4}$.
Soit $\varepsilon: x \mapsto g(x)-\frac{x^{3}}{12}$ définie sur $[0 ;+\infty[$. Cette fonction est dérivable $\operatorname{sur}\left[0 ;+\infty\left[\right.\right.$ et, $\varepsilon^{\prime}(x)=g^{\prime}(x)-\frac{x^{2}}{4}$. Il suffit d'utiliser ce qui vient d'être fait pour montrer que $\varepsilon^{\prime}(x) \leq 0$. Ainsi, ε est décroissante sur $[0 ;+\infty]$ et $\varepsilon(0)=0$ donc $\varepsilon(x) \leq 0$ d'où $0 \leq g(x) \leq \frac{x^{3}}{12}$.
5. $\quad f$ est un quotient de deux fonctions dérivables sur $] 0 ;+\infty[$, le dénominateur de f ne s'annulant pas sur $] 0 ;+\infty[$ donc f est dérivable sur $] 0 ;+\infty[$. Pour tout x appartenant à $] 0,+\infty[$,

$$
f^{\prime}(x)=\frac{\frac{1}{1+x} \times x-\ln (1+x)}{x^{2}} \text { soit } f^{\prime}(x)=\frac{1}{x^{2}}\left(\frac{x}{x+1}-\ln (1+x)\right) \text {. }
$$

6. Pour tout $x \geq 0$,

$$
\frac{2 x}{x+2}-\frac{x}{1+x}=\frac{2 x(x+1)-x(x+2)}{(x+2)(x+1)}=\frac{x^{2}}{(x+1)(x+2)} \geq 0
$$

On a prouvé que $\frac{2 x}{x+2} \geq \frac{x}{x+1}$ donc $-\frac{2 x}{x+2} \leq-\frac{x}{x+1}$ d'où $\ln (1+x)-\frac{2 x}{x+2} \leq \ln (1+x)-\frac{x}{x+1}$ soit $g(x) \leq \ln (1+x)-\frac{x}{x+1}$.
Ainsi, $-\ln (1+x)+\frac{x}{x+1} \leq-g(x)$ et, en utilisant $0 \leq g(x), f^{\prime}(x) \leq 0$. La fonction f est continue sur $\left[0 ;+\infty\left[\left(\lim _{x \rightarrow 0} f(x)=1\right)\right.\right.$ et, pour tout $x>0, f^{\prime}(x) \leq 0$. On en déduit que f est décroissante sur $[0 ;+\infty \mid$.
7. $\quad f(x)=\frac{\ln (x+1)}{x}=\frac{\ln \left[x\left(1+\frac{1}{x}\right)\right]}{x}=\frac{\ln x}{x}+\frac{\ln \left(1+\frac{1}{x}\right)}{x}$.
$\lim _{x \rightarrow+\infty} \frac{\ln x}{x}=0$ et $\lim _{x \rightarrow+\infty} \frac{\ln \left(1+\frac{1}{x}\right)}{x}=0$ donc $\lim _{x \rightarrow+\infty} f(x)=0$.

La courbe représentative de f admet l'axe des abscisses comme asymptote en $+\infty$.
8. On a vu dans la question 4. que $0 \leq g(x) \leq \frac{x^{3}}{12}$ donc $0 \leq \ln (1+x)-\frac{2 x}{2+x} \leq \frac{x^{3}}{12} \quad$ d'où $\quad \frac{2 x}{2+x} \leq \ln (1+x) \leq \frac{x^{3}}{12}+\frac{2 x}{2+x} \quad$ et $\frac{2 x}{2+x}-x \leq \ln (1+x)-x \leq \frac{x^{3}}{12}+\frac{2 x}{2+x}-x$ soit
$\frac{-x^{2}}{2+x} \leq \ln (1+x)-x \leq \frac{x^{3}}{12}-\frac{x^{2}}{2+x}$.
Pour tout $x>0$, on a $\frac{-1}{2+x} \leq \frac{\ln (1+x)-x}{x^{2}} \leq \frac{x}{12}-\frac{1}{2+x}$.
Faisons tendre x vers $0 . \lim _{x \rightarrow 0}\left(-\frac{1}{2+x}\right)=-\frac{1}{2}$.et $\lim _{x \rightarrow 0}\left(\frac{x}{12}-\frac{1}{2+x}\right)=-\frac{1}{2}$ donc $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{0}=-\frac{1}{2}$. On peut en déduire que f est dérivable en 0 et $f^{\prime}(0)=-\frac{1}{2}$.
f est dérivable en 0 donc (C) admet au point d'abscisse 0 une tangente, (T), dont une équation est $y=f^{\prime}(0)(x-0)+f(0)$ soit $y=-\frac{1}{2} x+1$. La position de la courbe (C) par rapport à la tangente
(T) est donnée par l'étude du signe de $f(x)-\left(-\frac{1}{2} x+1\right)$ soit $\frac{\ln (1+x)}{x}+\frac{1}{2} x-1$. On a vu dans la question 2. que $x-\frac{x^{2}}{2} \leq \ln (1+x) \leq x$ d'où, pour tout $x>0, \frac{\ln (1+x)}{x}-1+\frac{x}{2} \geq 0$. Finalement, (C) est au dessus de (T).

Eæercice 9\%***

Le but de cef exercice ext de Terwonter que la suite (r, him: il definie part $c_{n}=\frac{1}{\frac{1}{2}+\frac{1}{3}}+\frac{1}{1}, \ln (n)$ ecta convergente

1. Andtref que, pour tout red $x=1$, on a:

$$
\ln _{1+1}^{1} \ln (1+x) \text { ln }(r) \leqslant t^{1}
$$

$$
{ }^{2} t \left\lvert\, \frac{1}{2}+\frac{1}{2}\right., t \frac{1}{2}
$$

 que la suite (u,) , est: a pour limite tax.
3. Sbit J la fonction definie sur \mathbb{R}^{2}, $\operatorname{pat} f(x)=\frac{1}{x}, \ln \left|\frac{x y}{x}\right|$

En pilisant l'encadrement obteni it fayction 1, montret que, pour

 est crifissine ot que pour toul $x \geqslant 2, f(1): \leqslant \mathrm{c}, \leqslant 1 \pm \frac{1}{n}$
 Nets un reef quel hom purtet.
Aemargire Cersel St appelle La constanted Wuler. Fuler a caloule Hf decimoles de ai en 1734 Aruellenent on ne sait boujoura pas at y esturationncl ou irrationnel.

Solution

1. On pose, pour tout $x \geq 1, u(x)=\ln (1+x)-\ln (x)-\frac{1}{x+1}$ et $v(x)=\frac{1}{x}-\ln (1+x)+\ln (x)$.

- Étude de la fonction u sur $[1 ;+\infty[$:
$u^{\prime}(x)=\frac{1}{1+x}-\frac{1}{x}+\frac{1}{(x+1)^{2}}=\frac{-1}{x(x+1)}$ donc, pour tout $x \in[1 ;+\infty]$, $u^{\prime}(x)<0$ et u est strictement décroissante sur $[1 ;+\infty[$.

De plus, $u(x)=\ln \left(1+\frac{1}{x}\right)-\frac{1}{x-1}$. On a $\lim _{x \rightarrow+\infty} u(x)=0$, donc, pour tout $x \in\left[1 ;+\infty\left[, u(x) \geq 0\right.\right.$. On a $\frac{1}{x+1} \leq \ln (1+x)-\ln (x)$

- Étude de la fonction v sur $[1 ;+\infty[$:
$v^{\prime}(x)=-\frac{1}{x^{2}}-\frac{1}{x+1}+\frac{1}{x}=\frac{-1}{x^{2}(x+1)}$ donc, pour tout $x \in[1 ;+\infty[$, $v^{\prime}(x)<0$ et v est strictement décroissante sur $[1 ;+\infty[$.
De plus, $v(x)=\frac{1}{x}-\ln \left(1+\frac{1}{x}\right)$. On a $\lim _{x \rightarrow+\infty} v(x)=0$ donc, pour tout $x \in\left[1 ;+\infty\left[, v(x) \geq 0\right.\right.$. On a donc $\ln (1+x)-\ln (x) \leq \frac{1}{x}$
D'après (1) et (2), pour tout $x \geq 1$, on a :

$$
\frac{1}{x+1} \leq \ln (1+x)-\ln (x) \leq \frac{1}{x}
$$

2. On note, pour tout entier $n \geq 1, P(n)$ la proposition $《 u_{n+1}-1 \leq \ln (1+n) \leq u_{n}$ 》.
Pour $n=1$, on a $u_{2}=1+\frac{1}{2}$ et $u_{1}=1$. Comme $\frac{1}{2} \leq \ln (2) \leq 1$, la proposition $P(1)$ est vraie.
Soit n un entier naturel non nul. Supposons $P(n)$ vraie, c'est-àdire $u_{n+1}-1 \leq \ln (1+n) \leq u_{n}$ (3).
En utilisant l'encadrement de la question 1 , pour $x=n+1$, on obtient $\frac{1}{n+2} \leq \ln (n+2)-\ln (n+1) \leq \frac{1}{n+1}$ (4)
On ajoute, membre à membre, les encadrements (3) et (4) pour obtenir $u_{n+1}+\frac{1}{n+2}-1 \leq \ln (n+2) \leq u_{n}+\frac{1}{n+1}$.
Ainsi, $\quad u_{n+2}-1 \leq \ln (n+2) \leq u_{n+1}$ donc la proposition $P(n+1)$ est vraie. La proposition $P(n)$ est vraie au rang 1 et elle est héréditaire, elle est donc vraie pour tout $n \geq 1$.
Pour tout $n \geq 1, u_{n+1}-1 \leq \ln (1+n) \leq u_{n}$.
Pour $n \geq 1, \quad \ln (n+1) \leq u_{n}$. Comme $\lim _{n \rightarrow+\infty} \ln (n+1)=+\infty$, on a

$\lim _{n \rightarrow+\infty} u_{n}=+\infty$.

3. On utilise I'encadrement de la question 1 avec $x=n$.

Il vient $\frac{1}{n+1} \leq \ln (1+n)-\ln (n) \leq \frac{1}{n}$, ce qui s'écrit encore $\frac{1}{n+1} \leq \ln \left(\frac{1+n}{n}\right) \leq \frac{1}{n}$. On multiplie par -1 pour obtenir $-\frac{1}{n} \leq-\ln \left(\frac{1+n}{n}\right) \leq-\frac{1}{n+1}$. Ainsi, $0 \leq \frac{1}{n}-\ln \left(\frac{1+n}{n}\right) \leq \frac{1}{n}-\frac{1}{n+1}$.
Finalement, pour tout $n \geq 1,0 \leq f(n) \leq \frac{1}{n}-\frac{1}{n+1}$.
Pour tout entier naturel $n \geq 2$, on note $Q(n)$ la proposition :
$《 c_{n}=f(1)+f(2)+\ldots+f(n-1) »$.
Pour $n=2, \quad c_{2}=1-\ln (2)$ et $f(1)=1-\ln (2)$ donc $c_{2}=f(1)$ et la proposition $Q(1)$ est vraie.
Pour un certain entier naturel supérieur ou égal à deux, on suppose que $Q(n)$ est vraie. On a $c_{n}=f(1)+f(2)+\ldots+f(n-1)$ donc
$f(1)+f(2)+\ldots+f(n)=c_{n}+f(n)$.
$f(1)+f(2)+\ldots+f(n)=u_{n-1}-\ln (n)+\frac{1}{n}-\ln \left(\frac{1+n}{n}\right)$.
$f(1)+f(2)+\ldots+f(n)=u_{n}-\ln (n+1)$.
$f(1)+f(2)+\ldots+f(n)=c_{n+1}$.
La proposition $Q(n+1)$ est donc vraie. La proposition $Q(n)$ est vraie au rang 2 et elle est héréditaire donc elle est vraie pour tout $n \geq 2$.
Pour tout $n \geq 2, c_{n}=f(1)+f(2)+\ldots+f(n-1)$.
Pour tout $n \geq 2, c_{n+1}-c_{n}=f(n) \geq 0$ donc la suite $\left(c_{n}\right)$ est croissante.
Pour tout $n \geq 2, f(n) \geq 0$ donc $f(1) \leq f(1)+f(2)+\ldots+f(n-1)$ c'est-à-dire $f(1) \leq c_{n}(5)$.
On a: $f(1) \leq 1-\frac{1}{2}, \quad f(2) \leq \frac{1}{2}-\frac{1}{3}, \quad \ldots, \quad f(n-2) \leq \frac{1}{n-2}-\frac{1}{n-1}$, $f(n-1) \leq \frac{1}{n-1}-\frac{1}{n}$. En additionnant membre à membre ces inégalités, on obtient $c_{n} \leq 1-\frac{1}{n}(6)$.
D'après (5) et (6), pour tout $n \geq 2, f(1) \leq c_{n} \leq 1-\frac{1}{n}$.
3.a. On déduit de la question précédente que, pour tout $n \geq 2$, $f(1) \leq \dot{c}_{n} \leq 1$. La suite $\left(c_{n}\right)_{n \in \mathbb{N}^{*}-\{1\}}$ est croissante et majorée par 1 , elle est donc convergente vers un réel γ vérifiant $1-\ln (2) \leq \gamma \leq 1$.

XI. Exercice d'après les annales du bac

Exercice 98.

Les turts de probline sont ithide de la forction f. definie sur Mintervalle $\mid 0:+\infty)$ part $f(a) \frac{\ln \left(e^{2}, t\right)}{v^{2}}$ puis: la recherde de primitives de cotte fonction

14: On iefinith fonction g sur lintervalle. .ithe at par

$$
y \ddot{y})=2 x-(x, 1) \ln (x=y)
$$

1a, Determiner a limitede a (r) inrsque x tend vers:
1.12. Calculer, it (c) prou tont 3 rppartenant a I Intervalle 1 , 4 i.t. Tusuudre vinis $\mid 1 .+\infty$
1.d. Itudier les romistion de a sur I'utervalle 1 (t) oo

1ie: Niontrer que Jequation $y(t)=0$ a mite solution ritgie, intiee

 $x(x)=\ln \left(x^{2}-1\right)$

 sum linteryale lation
 fecroissante sur Mintatrilet sorta

Portie B. Firute de fie forction
 $\vec{\omega} \mid(x)=\left(e^{2}\right)$
2. Pn dedutie

2a. . Wa linita de $f(4)$ lerphet ta tend ver: 0
26. La limite de f(a) lor mut x tend vers tao
 quef frmet un maximum en in (va)

 5 cm un abecisse et then an wrambe: On prendra 10 . pour valeur spproptoe de or

$$
\text { Partie } C \text { - Rechertiente privitives the } f \text {. }
$$

1. Werifier que f est solution do léguation differenticile

$$
y^{\prime}+y=\frac{r}{r y} \cdot \frac{1}{4} \cdot \frac{r^{2}}{r^{2}+1}
$$

2. On pore hro $=\frac{c}{e^{2}-1+\frac{t}{2}+1}$

Solution

Partie A.

1.a. $\lim _{x \rightarrow 1}(x-1)=0$ et $\lim _{X \rightarrow 0} X \ln (X)=0$ donc $\lim _{x \rightarrow 1}(x-1) \ln (x-1)=0$.

De plus, $\lim _{x \rightarrow 1} 2 x=2$ (la fonction $x \mapsto 2 x$ est continue en 1). $\lim _{x \rightarrow 1}[2 x-(x-1) \ln (x-1)]=2$ soit $\lim _{x \rightarrow 1} g(x)=2$.
1.b. La fonction g est dérivable sur $] 1 ;+\infty[$. On pose $u(x)=x-1$, on a alors $g(x)=2 x-u(x) \ln (u(x))$ d'où
$g^{\prime}(x)=2-u^{\prime}(x) \ln (u(x))-u(x) \times u^{\prime}(x) \times \ln ^{\prime}(u(x))$.
$g^{\prime}(x)=2-1 \ln (x-1)-(x-1) \times 1 \times \frac{1}{x-1}=1-\ln (x-1)$.

$$
g^{\prime}(x)=1-\ln (x-1) \text {. }
$$

1.c. Pour tout $x \in] 1 ;+\infty[$, on a $(1-\ln (x-1)>0) \Leftrightarrow(\ln (x-1)<1)$. $(1-\ln (x-1)>0) \Leftrightarrow(\exp [\ln (x-1)]<\exp (1)) \Leftrightarrow(x-1<e)$. $(1-\ln (x-1)>0) \Leftrightarrow(x<e+1)$.
1.d. D'après 1.c, on a $\left(g^{\prime}(x)>0\right) \Leftrightarrow(1<x<1+e)$,

$$
\left(g^{\prime}(x)<0\right) \Leftrightarrow(x>1+e) \text { et } g^{\prime}(I+e)=0 .
$$

La fonction g est strictement croissante sur $] 1 ; 1+e]$ et strictement décroissante sur $[1+e ;+\infty]$.
1.e. Sur l'intervalle $\left[e+1 ; e^{3}+1\right]$, la fonction g est continue et strictement décroissante, donc elle réalise une bijection de $\left[e+1 ; e^{3}+1\right]$ $\operatorname{sur}\left[g\left(e^{3}+1\right) ; g(e+1)\right]$.
$g\left(e^{3}+1\right)=2\left(e^{3}+1\right)-e^{3} \ln \left(e^{3}\right)=2 e^{3}+2-3 e^{3}=2-e^{3}$.
$g(e+1)=2(e+1)-e \ln (e)=2 e+2-e=e+2$.
Il est clair que $e+2>0$ et, comme $2<e$, on a $2-e^{3}<0$.
Donc 0 appartient à $\left[g\left(e^{3}+1\right) ; g(e+1)\right]$. Sur $\left[e+1 ; e^{3}+1\right]$, l'équation $g(x)=0$ admet une unique solution α. On a $e+1<\alpha<e^{3}+1$.
Lä fonction g est strictement décroissante sur $[1+e ;+\infty[$ et $g(\alpha)=0$. Donc si $x>\alpha$ alors $g(x)<0$ et si $1+e \leq x<\alpha$ alors $g(x)>0$.
La fonction g est strictement croissante sur $[1 ; 1+e]$ et $\lim _{x \rightarrow 1} g(x)=2$ donc si $1<x \leq 1+e$ donc $2<g(x)$ et $g(x)>0$.

x	1		$1+e$	α	$1+e^{3}$	$+\infty$		
$g(x)$		+		+	0	-		-

Si $x \in] 1 ; \alpha[$ alors $g(x)>0$. Si $x \in] \alpha ;+\infty[$ alors $g(x)<0$. $g(\alpha)=0$.
2.a. $\lim _{x \rightarrow 1}\left(x^{2}-1\right)=0$ (la fonction $x \mapsto x^{2}-1$ est continue en 1).
$\lim _{X \rightarrow 0} \ln (X)=-\infty$ donc $\lim _{x \rightarrow 1} \ln \left(x^{2}-1\right)=-\infty$.
Commé $\lim _{x \rightarrow 1} \frac{1}{x}=1$ (la fonction $x \mapsto \frac{1}{x}$ est continue en 1)
$\lim _{x \rightarrow 1}\left[\frac{1}{x} \times \ln \left(x^{2}-1\right)\right]=-\infty$ donc $\lim _{x \rightarrow 1} \varphi(x)=-\infty$.
Pour tout $x>1, \varphi(x)=\frac{\ln \left(x^{2}\left(1-\frac{1}{x^{2}}\right)\right)}{x}=\frac{2 \ln (x)}{x}+\frac{\ln \left(1-\frac{1}{x^{2}}\right)}{x}$.
On a $\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x}=0$ donc $\lim _{x \rightarrow+\infty} 2 \times \frac{\ln (x)}{x}=0$.
De nouveau, on utilise le théorème sur la limite d'une fonction composée. $\lim _{x \rightarrow+\infty}\left(1-\frac{1}{x^{2}}\right)=1$ et $\lim _{X \rightarrow 1} \ln (X)=\ln (1)=0 \quad$ (car \ln est continue en 1) donc $\lim _{x \rightarrow+\infty} \ln \left(1-\frac{1}{x^{2}}\right)=0$.
Comme $\lim _{x \rightarrow+\infty} \frac{1}{x}=0$, on a $\lim _{x \rightarrow+\infty} \frac{1}{x} \times \ln \left(1-\frac{1}{x^{2}}\right)=0$.

$$
\lim _{x \rightarrow+\infty} \varphi(x)=0 \text {. }
$$

2.b. La fonction φ est dérivable sur $] 1 ;+\infty\left[\right.$. On pose $v(x)=x^{2}-1$. On a $v^{\prime}(x)=2 x$ et $\varphi(x)=\frac{\ln (v(x))}{x}$.

$$
\begin{gathered}
\varphi^{\prime}(x)=\frac{v^{\prime}(x) \times \ln ^{\prime}(v(x)) \times x-\ln (v(x))}{x^{2}}=\frac{\frac{2 x^{2}}{x^{2}-1}-\ln \left(x^{2}-1\right)}{x^{2}} . \\
\varphi^{\prime}(x)=\frac{2 x^{2}-\left(x^{2}-1\right) \ln \left(x^{2}-1\right)}{x^{2}\left(x^{2}-1\right)} .
\end{gathered}
$$

$g\left(x^{2}\right)=2 x^{2}-\left(x^{2}-1\right) \ln \left(x^{2}-1\right)$ donc $\varphi^{\prime}(x)=\frac{g\left(x^{2}\right)}{x^{2}\left(x^{2}-1\right)}$.
Pour tout x appartenant à $] 1 ;+\infty\left[, x^{2}\left(x^{2}-1\right)>0\right.$ donc $\varphi^{\prime}(x)$ est du signe de $g\left(x^{2}\right)$.
2.c. Pour tout $x>1$, on a $\left(g\left(x^{2}\right)>0\right) \Leftrightarrow\left(1<x^{2}<\alpha\right) \Leftrightarrow(1<x<\sqrt{\alpha})$ (la fonction racine est strictement croissante sur $] 0 ;+\infty[$ et $x>0$). Donc $\left(\varphi^{\prime}(x)>0\right) \Leftrightarrow(1<x<\sqrt{\alpha})$.

Pour $x>1$, on a $\left(g\left(x^{2}\right)<0\right) \Leftrightarrow\left(x^{2}>\alpha\right) \Leftrightarrow\left(\sqrt{x^{2}}>\sqrt{\alpha}\right) \Leftrightarrow(x>\sqrt{\alpha})$.
Donc $\left(\varphi^{\prime}(x)<0\right) \Leftrightarrow(x>\sqrt{\alpha}) . \varphi^{\prime}(\sqrt{\alpha})=0$.
Finalement, φ est strictement croissante sur $\mid 1 ; \sqrt{\alpha}]$ et strictement décroissante sur $[\sqrt{\alpha} ;+\infty]$.

Partie B.

1. Pour tout x appartenant à $] 0 ;+\infty[$, on a

$$
\dot{\varphi}\left(e^{x}\right)=\frac{\ln \left(\left(e^{x}\right)^{2}-1\right)}{e^{x}}=\frac{\ln \left(e^{2 x}-1\right)}{e^{x}}=f(x) .
$$

2.a. $\lim _{x \rightarrow 0} e^{x}=e^{0}=1$ (la fonction exponentielle est continue en 0) et $\lim _{X \rightarrow 1} \varphi(X)=-\infty$ donc $\lim _{x \rightarrow 0} \varphi\left(e^{x}\right)=-\infty$ et $\lim _{x \rightarrow 0} f(x)=-\infty$.
2.b. On utilise le théorème sur la limite d'une fonction composée.
$\lim _{x \rightarrow+\infty} e^{x}=+\infty$ et $\lim _{X \rightarrow+\infty} \varphi(X)=0$ donc $\lim _{x \rightarrow+\infty} \varphi\left(e^{x}\right)=0$.

$$
\lim _{x \rightarrow+\infty} f(x)=0 \text {. }
$$

2.c. Pour tout x appartenanit à $] 0 ;+\infty[$, la fonction f est dérivable en x et on a $f^{\prime}(x)=e^{x} \varphi^{\prime}\left(e^{x}\right)$. La fonction exponentielle est strictement positive, $f^{\prime}(x)$ est du signe de $\varphi^{\prime}\left(e^{x}\right)$.
Pour tout $x>0$, on a $\left(\varphi^{\prime}\left(e^{x}\right)>0\right) \Leftrightarrow\left(1<e^{x}<\sqrt{\alpha}\right)$
$\Leftrightarrow\left(\ln (1)<\ln \left(e^{x}\right)<\ln (\sqrt{\alpha})\right) \Leftrightarrow(0<x<\ln (\sqrt{\alpha}))$.
(la fonction \ln est strictement croissante sur \mathbb{R}_{+}^{*}) donc $\left(f^{\prime}(x)>0\right) \Leftrightarrow(0<x<\ln (\sqrt{\alpha}))$.
De même :
$\left(\varphi^{\prime}\left(e^{x}\right)<0\right) \Leftrightarrow\left(e^{x}>\sqrt{\alpha}\right) \Leftrightarrow\left(\ln \left(e^{x}\right)>\ln (\sqrt{\alpha})\right) \Leftrightarrow(x>\ln (\sqrt{\alpha}))$
donc $\left(f^{\prime}(x)<0\right) \Leftrightarrow(x>\ln (\sqrt{\alpha}))$.
$f^{\prime}(\ln (\sqrt{\alpha}))=e^{\ln (\sqrt{\alpha})} \times \varphi^{\prime}\left(e^{\ln (\sqrt{\alpha})}\right)=e^{\ln (\sqrt{\alpha})} \times \varphi^{\prime}(\sqrt{\alpha})=0$.
On peut conclure que f est strictement croissante sur $] 0 ; \ln (\sqrt{\alpha})]$ et strictement décroissante sur $[\ln (\sqrt{\alpha}) ;+\infty[$. La fonction f est croissante puis décroissante, elle admet donc un maximum en
$x=\ln (\sqrt{\alpha})$.
3. Comme f admet un maximum en $\ln (\sqrt{\alpha})$, pour tout réel x appartenant à $] 0 ;+\infty[$, on a $f(x) \leq f(\ln (\sqrt{\alpha}))$.
$f[\ln (\sqrt{\alpha})]=\varphi\left[e^{\ln (\sqrt{\alpha})}\right]=\varphi(\sqrt{\alpha})=\frac{\ln \left[(\sqrt{\alpha})^{2}-1\right]}{\sqrt{\alpha}}=\frac{\ln (\alpha-1)}{\sqrt{\alpha}}$.
On sait (Partie A. 1.e) que $g(\alpha)=0$ donc $2 \alpha-(\alpha-1) \ln (\alpha-1)=0$ d'où $\ln (\alpha-1)=\frac{2 \alpha}{\alpha-1} \cdot f[\ln (\sqrt{\alpha})]=\frac{1}{\sqrt{\alpha}} \times \frac{2 \alpha}{\alpha-1}=\frac{2 \sqrt{\alpha}}{\alpha-1}$. Pour tout réel x appartenant à $] 0 ;+\infty\left[\right.$, on a $f(x) \leq \frac{2 \sqrt{\alpha}}{\alpha-1}$.
4. Tracé de f.

Partie \mathbb{C}.

1. Pour tout $x>0, f(x)=\varphi\left(e^{x}\right)$.
$f^{\prime}(x)=\varphi^{\prime}\left(e^{x}\right) \times e^{x}=\frac{g\left(e^{2 x}\right)}{e^{2 x}\left(e^{2 x}-1\right)} \times e^{x}=\frac{2 e^{2 x}-\left(e^{2 x}-1\right) \ln \left(e^{2 x}-1\right)}{e^{x}\left(e^{2 x}-1\right)}$.
$f^{\prime}(x)+f(x)=\frac{2 e^{2 x}-\left(e^{2 x}-1\right) \ln \left(e^{2 e}-1\right)}{e^{x}\left(e^{2 x}-1\right)}+\frac{\ln \left(e^{2 x}-1\right)}{e^{x}}$.
$f^{\prime}(x)+f(x)=\frac{2 e^{2 x}-\left(e^{2 x}-1\right) \ln \left(e^{2 e}-1\right)}{e^{x}\left(e^{2 x}-1\right)}+\frac{\left(e^{2 x}-1\right) \ln \left(e^{2 x}-1\right)}{e^{x}\left(e^{2 x}-1\right)}$.
$f^{\prime}(x)+f(x)=\frac{2 e^{2 x}}{e^{x}\left(e^{2 x}-1\right)}=\frac{2 e^{x}}{e^{2 x}-1}$.
De plus, pour tout $x>0$,
$\frac{e^{x}}{e^{x}-1}-\frac{e^{x}}{e^{x}+1}=\frac{e^{x}\left(e^{x}+1\right)-e^{x}\left(e^{x}-1\right)}{\left(e^{x}-1\right)\left(e^{x}+1\right)}=\frac{e^{2 x}+e^{x}-e^{2 x}+e^{x}}{e^{2 x}-1}=\frac{2 e^{x}}{e^{2 x}-1}$.
Finalement, $f^{\prime}(x)+f(x)=\frac{e^{x}}{e^{x}-1}-\frac{e^{x}}{e^{x}+1}$. La fonction f est une solution particulière, sur $] 0 ;+\infty[$, de l'équation différentielle $y^{\prime}+y=\frac{e^{x}}{e^{x}-1}-\frac{e^{x}}{e^{x}+1}$.
2.a. Pour tout réel x appartenant à $] 0 ;+\infty\left[\right.$, on pose $u(x)=e^{x}-1$ et $v(x)=e^{x}+1$. On a alors $h(x)=\frac{u^{\prime}(x)}{u(x)}-\frac{v^{\prime}(x)}{v(x)}$.
Sur $] 0 ;+\infty[$, les fonctions u et v sont strictement positives, donc on en déduit une primitive H de \hbar sur $] 0 ;+\infty[$:

$$
H(x)=\ln (u(x))-\ln (v(x))=\ln \left(\frac{u(x)}{v(x)}\right) \text { soit } H(x)=\ln \left(\frac{e^{x}-1}{e^{x}+1}\right) .
$$

2.b. Pour tout réel x appartenant à $] 0 ;+\infty[$, on a :
$\left(f^{\prime}(x)+f(x)=h(x)\right) \Leftrightarrow\left(f(x)=h(x)-f^{\prime}(x)\right)$.
Les primitives de f sur $] 0 ;+\infty[$ sont les fonctions F définies sur $] 0 ;+\infty\left[\operatorname{par} F(x)=H(x)-f(x)+K=\ln \left(\frac{e^{x}-1}{e^{x}+1}\right)-\frac{\ln \left(e^{2 x}-1\right)}{e^{x}}+K\right.$.

$$
F(x)=\ln \left(\frac{e^{x}-1}{e^{x}+1}\right)-\frac{\ln \left(e^{2 x}-1\right)}{e^{x}}+K .
$$

[^0]:

